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Abstract

The research presented in this thesis is centred in the rapidly growing field of affective com-

puting and focuses on the automatic recognition of affect. Numerous diverse technologies

have become part of working and social life, hence it is crucial to understand whether recog-

nising the affective state of the user may be added to increase the technologies’ effectiveness.

The contributions made are the investigation of a low-level description of body posture,

the proposal of a method for creating benchmarks for evaluating affective posture recognition

models, and providing an understanding of how posture is used to communicate affect. Using

a low-level posture description approach, this research aims to create automatic recognition

models that may be easily adapted to different application contexts. These recognition

models would be able to map low-level descriptions of postural configurations into discrete

affective states and levels of affective dimensions.

The feasibility of this approach is tested using an incremental procedure with three

studies. The first study (acted postures), investigates the feasibility of recognising basic

emotions and affective dimensions from acted, i.e., stereotypical, exaggerated expressions.

The second study (non-acted postures), aims at recognising subtle affective states and af-

fective dimensions from non-acted body postures in the context of a video game. In both

studies, the results showed above chance level agreement and reliable consistency between

human observers for the discrete affective states and valence and arousal dimensions. A fea-

ture analysis showed that specific low-level features are predictive of affect. The automatic

recognition models achieved recognition rates similar to or better than the benchmarks com-

puted. Extending the non-acted postures study, the third study focuses on how the affective

posture recognition system performs when applied to sequences of non-acted static postures

that have not been manually preselected, as if in a runtime situation. An automatic mod-

elling technique was combined with a decision rule defined in this research. The results

indicate that posture sequences can be recognised at well above chance level.
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Chapter 1

Introduction

Motivation

The research presented in this thesis is centred in the rapidly growing field of affective

computing and focuses on the automatic recognition of affect. Coined by Rosalind Picard

[Pic97], affective computing is a multidisciplinary field of research concerned with “com-

puting that relates to, arises from, or deliberately influences emotions”. In order to create

systems aimed at the recognition of affect, an understanding must be gained of how people

experience affect and emotion, both in conveyance and recognition. A challenge in creating

these systems is that, as Picard [Pic98] points out, many factors affect the manner in which

humans convey emotion or affective messages, such as age, gender, culture, context, etc.

Numerous affective computing studies have focused on affect that is expressed and per-

ceived from facial expressions in particular whereas research on body posture has been

much less emphasised. Reasons for this difference may be due to the lack of formal models

for body posture as there are for the face (e.g., the Facial Action Coding System (FACS)

[EF78]), as well as the complexity of the body. Only recently have bodily expressions of

affect gained attention in affective computing research. As technologies encountered by the

average person on a day-to-day basis become more and more ubiquitous [FT05], they afford

a multimodal interaction in which body posture is becoming a focus of attention. The pur-

26
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pose of the research presented in this thesis is on testing the power of body posture in affect

recognition.

Relevance

The relevance of this research and the benefits of developing applications into which affect

perception can be integrated is evident in many areas of society, such as security, law en-

forcement, games and entertainment, education and health care. For instance, research on

affective aspects of video games has become a hot topic in the last few years. Video games

are meant to be fun and challenging as well as frustrating at times, and frequently, eliciting

frustration in a player is considered important in order to intensify the gaming experience

[Fre03]. However, if the player’s level of frustration or boredom is too high for too long, s/he

is likely to give up and quit [GD04]. To be more effective, technologies need to be created

to account for such changes.

Educational applications face similar problems. Motivation plays a significant role in

learning [AM94][Cov93][Sta96], and students lose motivation when high levels of affective

states such as frustration, anxiety, fear of failure, etc. are experienced [JG93][KBP07]. In-

deed, human teachers are taught how to read affective aspects of students’ body language

and how to react appropriately through their body language and actions [NC93] in an

effort to help students maintain motivation. Educational applications that can act as hu-

man counterparts and recognise the learner’s affective states from nonverbal communication

modalities such as posture may be able to provide efficient guidance to the student.

In the health care industry, robots are now being introduced into traditionally human

roles which also require affective awareness. For instance, robots are being implemented in

patient rehabilitation situations [NR05][CPM+07], taking the place of human physiologists.

A patient’s affective state and level of motivation plays a big role in whether or not the

patient continues with the prescribed rehabilitation. Rehabilitation robots that can detect

a patient’s affective state may have a better chance of helping the patient regulate his/her

emotions in an effort to maintain positive affect, motivation and interest level.
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Terminology

Throughout this thesis, the terms affect and emotion are used repeatedly. There is much

debate about these terms and how to define them and what triggers them. Generally

speaking, the function of affect and emotion is a support to, and necessary for, cognitive

processes such as memorisation, decision making, problem solving, intelligence and attention

focusing [Dam94]. Damasio further asserts that rational thinking is not possible without

emotion.

According to the Dictionary of Psychology [psy08], affect is defined as

“Behavior that expresses a subjectively experienced feeling state (emotion); affect

is responsive to changing emotional states, whereas mood refers to a pervasive

and sustained emotion. A subjective feeling or emotional tone often accompanied

by bodily expressions noticeable to others”.

Many researchers consider the term affect as the umbrella term under which all emotional

phenomena exists [You43][LR78] and the term emotion as one aspect underneath that um-

brella term. This is the viewpoint taken in this thesis. Furthermore, there is a debate about

whether affect is the result of a cognitive appraisal of a situation [Laz82], or if affect occurs

prior to cognition [Zaj80]. The affective computing community tends to include cognitive

states under the umbrella of affect [eKR04][AR09]. This is also the view taken in this thesis.

Conceptually, the term emotion and what it represents is almost universally understood,

and yet almost impossible to define clearly [FR84][Rus03][PPB+04]. No single definition

seems to suffice within the various fields in which emotion is studied [Fox08][Iza07][Fri88]

[KJK81]. Somewhat similar to the definition of affect, in her 2008 book Fox [Fox08] defines

emotion as

“A relatively brief episode of coordinated brain, autonomic and behavioural changes

that facilitate a response to an external or internal event of significance to the

organism.”
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In this thesis, the terms affect and emotion are used throughout as general terms and

both discrete and dimensional approaches are used to describe affect.

1.1 Research Aims and Challenges

To have a more prominent place in today’s society, new technologies may need to have affect

recognition capabilities [FT05]. To develop systems with these capabilities, several issues

have been identified which this thesis aims to address. These issues have been formulated

into a set of hypotheses depicted in Figure 1.1 and explained below.

The overall main hypothesis is that affect can be recognised from whole body pos-

tures using a low-level description of the body. More specifically, it is hypothesised

that levels of affective dimensions, acted basic emotions and non-acted, non-basic affective

states can be recognised from posture. In this research actors are defined as participants who

are explicitly asked to enact emotions through their body movements, whereas non-actors

are not aware of the purpose of the study, thus their body movements are considered to be

naturally expressive. Both acted and non-acted situations were chosen in order to implement

an incremental approach to affect recognition. The use of an acted situation was chosen first

because it is a typical starting point for affect recognition research [DCCS+07][LNP02]. It is

thought that if acceptable levels of recognition are not possible at this level, then recognition

at a non-acted, more complex level will not be possible either.

To investigate the hypothesis more fully, two sub-hypotheses are made. One, that hu-

man observers (i.e., the participants who judge the affective bodily expressions as opposed

to those participants whose bodily expressions were recorded) can recognise affect from body

posture at above chance level. Chance level is the percentage that would be achieved with

choosing, in this research, an affective state or affective dimension level at random. Two,

that automatic recognition models can achieve accuracy rates similar to benchmarks

based on the human observers.
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Figure 1.1: Hypothesis tree

Recognising affect from posture using a low-level description of the body

The study of body posture within the affective computing field is still novel while automatic

affect recognition for facial expressions and voice have a stronger history. To date, most of the

work has focused on stereotypical affective movements such as dance [CMR+04][KKVB+05],

and with a limited or gross description of the bodily expression. Affect and emotion may

be expressed in many situations and activities that involve the use of the entire body, and

this makes the modelling process quite complex. That may be why most of the work has

focused on body movement instead of posture, looking at dynamic aspects of body movement

as suggested by dance (where body movement is purposely used to express emotion) and

only with a gross description of the configuration of the body. Static information about

the configuration of the body may provide sufficient information for discriminating between
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affective states. Can an approach be found that allows for the creation of more general

postural configuration models that are grounded on cues that are largely independent of the

context? This is a novel approach because, as previously mentioned, there are no widely

agreed upon models for affective bodily expressions as there are for the face.

Building automatic recognition models based on human observers

In this thesis, human observers are chosen to assign ground truth labels to affective bodily

expressions as opposed to using the expressers’ labels. The reason for this is that at the

moment, it is not possible to know reliably what the expresser’s true affective state is.

Asking the expresser herself is not sufficient and not always possible, as will be discussed in

Chapter 2.

Judging the recognition accuracy of the automatic models

In this thesis, the recognition accuracies of the automatic models are validated against

benchmarks that are created based on the agreement levels achieved by human observers.

This method was chosen because benchmarks for evaluating the performance of affective

posture recognition systems have yet to be defined in the affective computing field. Bench-

marks for facial expression recognition systems exist but they are generally based on an

expert coder’s ability to classify Action Units (AUs)1 [DBH+99][BLF+06]. Furthermore,

the intention is to create software focused towards replacing a human interaction partner.

The automatic recognition of affect from body posture will be created using a random re-

peated sub-sampling method to test the models’ ability to generalise to new observers, and

cross-validation to test the models’ ability to generalise to new postures.
1An Action Unit is “a visually distinguishable and anatomically based unit of facial muscle movement”

[TCDFBP02] as part of FACS [EF78].
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1.2 Contributions

This thesis makes contributions to the affective computing field in the study of human and

automatic recognition of affect from whole body posture. The main contributions are listed

below.

The investigation of a low-level description of body posture

Testing whether a low-level description of body posture can encode enough information

to support the automatic recognition and discrimination of bodily expressions of affect.

Bodily expressions of affect are thus established as a powerful modality to mediate human-

technology interaction. While it is acknowledged that to obtain more reliable automatic

recognition of affect, systems should contain the integration of affective information from

multiple modalities, the research carried out for this thesis provides recognition tools for

whole body posture only.

Proposing a method for setting benchmarks for affective expressions

The benchmarks for automatic affect recognition are developed using human observer judg-

ments as the ground truth labels as opposed to the expressers themselves. The recognition

models are tested against human observer judgments of the affective postures. While some

research has also considered observers’ judgments as ground truth, the variability that oc-

curs between observers is not addressed. Furthermore, the observers recruited typically

represent a narrow band of the population. Therefore, to take these issues into account, the

approach proposed in this research project is a repeated sub-sampling method to determine

benchmarks against which the automatic recognition models are evaluated.

Understanding how affect can be communicated through body posture

An understanding of the affective information in body posture that can be recognised by

human observers. This is examined through an analysis of human observers’ judgments on
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acted and non-acted affective expressions. By studying factors such as culture and under-

standing cross-cultural differences that exist in the way people read affective body expres-

sions, the information can be used to inform researchers in other fields such as behavioural

psychology and emotion synthesis. For instance, the information about specific low-level

features that contribute to the conveyance of a specific affective state can be used to create

embodied avatar agents and robots (outside the scope of this thesis).

1.3 Scope of Thesis

This thesis is focused on the mapping of body posture (i.e., configuration information as

opposed to dynamic information) described by low-level configuration features into affective

labels and dimensions, and investigating how humans and automatic recognition models use

this low-level posture description to discriminate between the affective states and dimensions.

Motion capture systems were chosen over vision based systems in order to more easily obtain

precise numerical data that describes the relations between the joint positions of the person’s

body in a three-dimensional (3D) space.

To create models for recognising posture according to affective states and levels of af-

fective dimensions, postures are described according to low-level features (e.g., distances

between joints, etc., explained in detail in Chapters 3-5) and labelled according to observer

judgments. Posture judgment surveys are employed to determine whether affective states

and levels of affective dimensions can be recognised by human observers from static images

created from original motion capture data of acted and non-acted postures mapped to simple

3D avatars. In contrast to most affective computing research, the observers’ labels are used

to determine the ground truth of each posture as a step toward creating automatic recog-

nition models that may act as a substitute for a human partner. Thus, observer judgments

were chosen over other methods such as the actors’ labels, self-report and physiological

measures because the aim is to achieve recognition rates similar to human observers. The

recognition models are built using machine learning techniques. Due to a lack of existing
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benchmarks in the affective computing field, the models are evaluated by comparing their

performance rates to benchmarks defined in this research. Acted postures are examined

first. In the second phase, non-acted postures are obtained while users play a video game

as a step toward examining the real-world applicability of this type of system. In the third

phase, an affective posture recognition system is built to evaluate how the system may per-

form when applied to sequences of non-acted static postures in a runtime situation where

the postures to be recognised have not been manually selected.

Using a video game context for the second and third studies, the research presented in

this thesis aims to validate the use of posture as an input modality for automatic affective

recognition systems. While the integration of multiple modalities into one recognition system

is recognised as an important, overall goal of affective computing, it is outside the scope of

this thesis. As will be shown in Chapter 2, the study and understanding of posture in

affective computing is still new and emerging while the study of other modalities is more

advanced. Thus, it is important first to determine the information that can be recognised

from posture in order to assess how much emphasis to place on posture alone within a

multimodal affective recognition system.

1.4 Thesis Structure

• Chapter 2: Background

This chapter highlights the main issues in affect recognition and outlines the novelty

of the research presented in this thesis. It provides a discussion on the state-of-the-art

in both human and automatic recognition of affect from whole body postures. Affect

can be recognised from a variety of modalities which are briefly discussed throughout

the chapter. However, the main focus is on affect recognition via the nonverbal com-

munication channel of body posture and the need for a new modelling and evaluation

approach in affect recognition in general.
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• Chapter 3: Research Hypotheses and Methods

This chapter explains the hypotheses of this research and describes the method adopted

to prove the hypotheses. This method involves creating a set of benchmarks using a

random repeated sub-sampling method on the agreement levels between subsets of

human observers to evaluate the automatic recognition of affective posture. Both

basic and non-basic affective states and levels of affective dimensions are examined.

Also discussed are the modelling techniques implemented for building and testing

automatic affective posture recognition models. Three case studies are outlined which

involve collecting affective posture data to be described by a set of low-level posture

description features and training and testing automatic recognition models built with

this data.

• Chapter 4: Case Study 1: Modelling Acted Basic Emotions

This chapter describes the acted postures study which addresses basic emotions from

acted, stereotypical affective postures. The motion capture participants are called

actors because they were explicitly instructed to enact affective postures for four basic

emotion categories, angry, fearful, happy, and sad. After obtaining ground truth labels

for a set of static postures that have been manually extracted from the motion capture

data, the modelling technique described in Chapter 3 is implemented for creating

and validating the recognition models. The posture features important for classifying

affective posture are analysed for both human observer and automatic recognition of

emotion categories and affective dimensions. The results obtained are discussed and

reflected upon at key points throughout the chapter.

• Chapter 5: Case Study 2: Modelling Non-Acted Affect in a Video Game Scenario

This chapter describes the non-acted postures study which investigates affective pos-

ture in a non-acted, natural context instead of an acted situation. The participants

have not been apprised of the purpose of the study as an attempt to collect unsolicited

postural displays of affect, resulting in postural expressions that are typically more

subtle than in the acted postures study. Instead of basic emotions, concentrating,
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defeated, frustrated and triumphant affective states are examined as well as affective

dimensions. Static postures manually extracted from the motion capture data have

been evaluated by a small group of observers across several evaluations per observer.

As in Chapter 4, automatic recognition models are built and tested, and important

features are identified and analysed for both the observers and the automatic models.

The results obtained are discussed and reflected upon at key points throughout the

chapter.

• Chapter 6: Case Study 3: Real Time Affective Posture Recognition

Using the video game scenario described in Chapter 5, the aim of Chapter 6 is to

evaluate how the affective posture recognition system performs in a runtime situation

on a sequence of postures that have not been manually extracted. The system is built

by combining the classification method used in Chapter 5 with a decision rule that

has been developed in this research.

• Chapter 7: Conclusions

This chapter summarises the conclusions drawn from the case studies presented. It

contains a discussion on the overall findings and contributions of the research project.

The limitations encountered due to the various methods and techniques employed are

examined, and ideas on possible solutions are contemplated as directions for future

work.



Chapter 2

Background

The role played by affect in human development and everyday functioning is well recognised

[IASF02]. Indeed, its importance in intelligent and social behaviour has been accepted and

researched within several fields including psychology, neuroscience, biology and affective

computing. Within the affective computing field, emotion theories are applied to create

technologies that are more aware of human emotions in order to make the technologies more

able to react and respond appropriately.

Several issues arise in determining how to create effective models for the automatic recog-

nition of affect. How is affect described? What role does bodily information play in affect

recognition? Which communication modalities should be used to recognise affect in humans

and how should they be modelled? Are there universal aspects to affect expression and recog-

nition or are they affected by human factors? Is it possible to create automatic recognition

systems capable of recognising affective states and dimensions as well as human observers

can? How can the ground truth for affective expression data be reliably determined? The

purpose of this chapter is to examine these issues and present the state-of-the-art in the

field.

The chapter is organised as follows: Section 2.1 briefly outlines two main schools of

thought for describing affect and emotion and how they may be organised. Section 2.2

37
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discusses the motivation for understanding and studying affect expression and recognition

from whole body posture. A discussion on how specific cues of bodily expressions may be

mapped to specific affective states is provided in Section 2.3. Section 2.4 briefly explores the

universality argument surrounding affect recognition and conveyance. Section 2.5 reports

on the state-of-the-art of automatic affective recognition systems. Section 2.6 tackles some

of the methodological issues discussed in the literature that exist for creating automatic

affective expression recognition systems. Section 2.7 ends the chapter with a summary of

the main issues encountered in the field of affective computing and how these issues have

informed the work in this thesis, thus highlighting the novelty of this research project.

2.1 Theories of Affect: An Overview

“The mysticism of ineffability and freedom that surrounds emotions may be one

reason why the psychology of emotion and feeling has advanced so slowly over

the last 100 years” [Fri88].

There is a wealth of research on emotion in psychology and the discussion of emotion

and affect extends back hundreds of years. Given this understanding, the question to be

asked in this section is: how should affective expressions be described? Research in the

affective computing field involving classification of affective expressions typically focuses on

two schools of thought, discrete emotion categories and affective dimensions [VK02][Laz91].

A complete discussion on emotion theories is beyond the scope of this thesis. The remainder

of this section is focused on an overview of some of the main theorists and components of

both schools of thought.

Discrete emotion theories

Discrete emotion theorists consider emotions as instances of unique and separate states, e.g.

anger or happiness. Furthermore, many discrete emotion theorists also consider a number of

emotions as basic or primary yet there is no consensus on either the number of categories or
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which emotions are considered basic [OT90]. According to Fox [Fox08], “the ‘basic’ emotions

might be those that are critical for the survival of: (a) the species - biological criterion, (b)

the society - social criterion, or (c) the self - psychological criterion.”

The core concept in the discrete emotions approach is that obvious behavioural and

physiological responses occur after an emotion has been elicited [Fox08]. The activation of

an emotion is likened to a computer program in that the triggered emotion causes a series of

responses by various systems [Tom62][Tom63]. This model of emotion activation is depicted

in a schematic model adapted from Levenson [Lev94] shown in Figure 2.1.

Figure 2.1: A schematic model of emotion depicting the key concept of the discrete emotions
approach. Taken from Fox [Fox08] and adapted from [Lev94]

Table 2.1 lists some of the discrete, basic emotions theorists. As can be seen in the Table

and noted by Fox [Fox08] and Ortony and Turner [OT90], many of the discrete emotions

theorists have accepted anger, fear, happiness and sadness in their sets of basic emotions.

Ortony and Turner go on to point out that an emotion term in one theorist’s list, such as

anger or happiness, may be termed differently in other theorists’ lists. For example, anger

may be labelled as anxiety or rage, and happiness may be referred to as joy or elation. When

taking this view, the lists of basic emotions are not as different as they first appear.

Ortony and Turner go on to question, why basic emotions? They state that a common
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Table 2.1: Several theorists’ lists of “basic” emotions. Adapted from [OT90].

Reference Fundamental emotions

[Arn60] Anger, aversion, courage, dejection, desire, despair, fear, hate,
hope, love, sadness

[EFE82] Anger, disgust, fear, joy, sadness, surprise
[Gra82] Rage and terror, anxiety, joy
[Iza71] Anger, contempt, disgust, distress, fear, guilt, interest, joy, shame,

surprise
[Jam84] Fear, grief, love, rage
[McD26] Anger, disgust, elation, fear, subjection, tender-emotion, wonder
[OJL87] Anger, disgust, anxiety, happiness, sadness
[Pan82] Expectancy, fear, rage, panic
[Plu80] Acceptance, anger, anticipation, disgust, joy, fear, sadness, sur-

prise
[Tom94] Anger, interest, contempt, disgust, distress, fear, joy, shame, sur-

prise
[Wat30] Fear, love, rage

reason is to be able to discuss emotion observations. The ability to discuss emotions in

terms of labels can be important when evaluating recognition performances of humans. For

instance, observations such as “the fact that some emotions appear to exist in all cultures

[...] [and] that some emotions appear to be universally associated with and recognizable by

characteristic facial expressions” [OT90]. The universality of emotions debate is discussed

in more detail in Section 2.4.

Dimensional theories

The dimensional approach to affect is focused on how the world is experienced. Many

dimensional theorists conform to the view that emotion labels are learned [Fox08]. “An

underlying assumption is that emotions are defined to a large extent by the verbal labels we

use to describe them. [...] A genuine problem for science, however, is that these everyday

labels often describe very broad and ‘fuzzy’ semantic categories that may not necessarily

represent facts of nature [RF99].” [Fox08].

As a response to this problem, dimensional theorists consider affective states as existing
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in a continuous, multidimensional space with the dimensions being bipolar and independent.

Psychological research over the last century has reported that there are three dimensions

of affect: valence (levels ranging from pleasure to displeasure), arousal (levels of alertness

ranging from calm to excited) and dominance/potency (levels of control over an event)

which cover the majority of affect variability [Meh68][OST57][Wun73][Dav64]. However,

in a recent article, Fontaine and colleagues [FSRE07] asserted that understanding which

affective dimensions are represented in the emotional domain remains an open issue.

A lot of the psychological research to date has focused mainly on the valence and arousal

dimensions [FSRE07]. Indeed, the valence and arousal dimensions have been shown to be

present in all cultures [Wie95]. Several bipolar dimensions were found in all the languages

studied in [OMM75] as reported in [Fox08]. These bipolar concepts seem to reflect a combi-

nation of discrete emotion categories and dimensions, e.g., ‘I was very happy/very sad’. As

discussed by Feldman Barrett [Fel04], in reporting subjective experiences, some individuals

are shown to use broad, global terms while others tend to use discrete emotion labels. Feld-

man Barrett [Fel06] further describes results from eight different studies conducted in her

lab over a span of 10 years, stating that while all the participants of these studies described

their emotional responses in terms of pleasure and displeasure, there were wide ranging

differences for individuals in their use of discrete emotion labels.

The two-dimensional model of Watson and Tellegen [WCT88] proposes two dimensions

of experience, a horizontal dimension ranging from low to high positive affect, and a vertical

dimension ranging from low to high negative affect, as reflected in Figure 2.2. Their view

is that these two dimensions (both are dimensions of valence) are completely separate and

unrelated, i.e., orthogonal. In yet another view, represented in Figure 2.3, Thayer’s model

also comprises two independent dimensions, yet instead of valence, both dimensions represent

levels of arousal: tension along the vertical dimension and energy along the horizontal

dimension [Tha89].

Differing from Watson and Tellegen’s and Thayer’s views, Russell’s view [Rus80] is that

all emotions can be represented as consisting of variations of pleasantness, i.e., valence as
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Figure 2.2: Watson and Tellegens’s two-dimensional model of affect. From [WCT88]

Figure 2.3: Thayer’s two-dimensional model of affect. From [Tha89]
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Figure 2.4: Russell’s circumplex model of affect. Activation (also known as arousal) is
presented as the vertical dimension and valence is shown on the horizontal dimension and
discrete emotion labels are mapped to the dimensional space. From [Rus80]

the horizontal dimension and variations of activation, i.e., arousal as the vertical dimension.

Russell does not consider the discrete and dimensional spaces as independent. Instead, they

are linked and discrete categories can be mapped onto the dimensional space and create a

‘circumplex model’ (i.e., a circular structure) as shown in Figure 2.4. This mapping can be

used to aid discussions and comparisons between modalities.

The dimensional approach has focused on experienced affect through subjective, self-

reported affect (either through verbalising experiences or filling out standardised question-

naires) or physiological responses in order to identify the dimensions. However, recent neu-

roscience evidence indicates that both experience and perception may occur when viewing

another person’s actions [DG99][RFGF96] meaning that these dimensions can be imple-

mented to gain an understanding of how human observers perceive and interpret affect.

Research exists for mapping facial expressions to affective dimensions [Rus97][Bre03].

Breazeal [Bre03] has mapped a series of facial expression photos onto Russell’s [Rus80]

arousal-valence dimensions. However, in the realm of bodily expressions, while Paterson
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and colleagues [PPS01] have mapped arm movements into affective dimensions (discussed in

more detail in Section 2.3), research mapping whole body posture into affective dimensions

has not been found. This is important in affective computing for comparing systems to

understand if body posture can be discussed in terms of affective dimensions as can be done

for facial expressions.

Integrating discrete and dimensional approaches

While the debate between the use of dimensions and discrete emotion categories continues,

emotion science research appears to make use more and more of a hybrid approach to the

description of affective experience. “It is difficult at this point to determine whether discrete

emotions perspectives or dimensional perspectives provide a more accurate view of emotions

and moods and how they are structured. A key challenge is to examine these different

research traditions and determine whether the empirical evidence from both approaches can

be integrated in a sensible way to provide a comprehensive understanding of affect” [Fox08].

Identifying bodily expressions as combinations of discrete labels and levels of affective

dimensions may provide a more complete and accurate description of the affective state

exhibited. A single label may not always be enough to reflect the complexity of the affective

state conveyed. Indeed, in the realm of affective computing, research is now focusing on

an integration of the discrete emotions and affective dimensions approach, as evidenced by

recent studies examining the effectiveness of recognising combined facial expressions and

bodily expressions [GP06][CPM+09].

2.2 The Importance of the Body in Affect Recognition

“Considering the emotional value of bodily expressions, it is somewhat surprising

that the study of perception of whole-body expressions lags so far behind that of

facial expressions.” [VdSRdG07]

Armed with a better understanding of how affect and emotion are viewed, attention
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can now be focused on how affect and emotion are expressed and recognised in humans.

Affect expression occurs through combinations of verbal and nonverbal communication

channels such as vocal prosody, eye gaze, facial expression, and body posture, among

others [Pic98]. Yet given this wide range of modalities, the majority of research on non-

verbal affect recognition has concentrated on recognising facial expressions in particular

[Wal98][Ekm94][EMA+02][Rus94] [ADGY07]. Thus, a fair amount is known and accepted

about affective facial expressions, such as some of the ways in which they are conveyed and

recognised, their neurobiological bases [dG06], and an understanding towards how to code

them [EF78]. As explained in Chapter 1, there is a well established, well known coding

system for facial expressions, (FACS), that took nearly a decade to develop [EF82] in the

1970’s by Ekman and Friesen [EF78]. The examination of facial expression perception has

been the basis for learning how humans process affect neurologically [Ado02].

The same cannot be said for affective bodily expressions. Only recently has affective

computing research focused on body movement and posture. Indeed, in a 2009 article, de

Gelder [dG09] states that 95% of the studies on emotion in humans has been conducted

using facial expression stimuli. Research using information from human voice, music and

environmental sounds make up the majority of the remaining 5%, with research on whole-

body expressions comprising the smallest number of studies.

What role does bodily information play in affect recognition? Bodily expressions have

been recognised as more important for nonverbal communication than was previously thought

[MF69][Arg88]. According to Mehrabian and Friar [MF69] and Wallbott [Wal98], changes

in a person’s affective state are also reflected by changes in body posture. Mehrabian and

Friar found that bodily configuration and orientation are significantly affected by a com-

municator’s attitude toward her/his interaction partner. Ekman and Friesen [EF67][EF69b]

conjecture that postural changes due to affective state aid a person’s ability to cope with

the experienced affective state. In fact, as seen in the behavioural studies presented in the

remainder of this section, some affective expressions may be better communicated by the

body than by the face [Arg88][Bul87].
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Darwin [Dar72] surmised that people are able to control bodily movements during felt

emotions. Ekman and Friesen [EF69a] refer to this as the “face>body leakage hypothesis”.

However, they conclude that there is a lack of evidence to support Darwin’s claim by stating

that “most people do not bother to censor their body movements”. Specifically, the authors

hypothesised that in Western cultures more emphasis is placed on an individual’s facial

activity during conversation than on bodily activity. The individual may therefore make a

conscious attempt to control her facial expressions. Thus, it may be advantageous instead

to note a person’s body posture when in situations where deception may be a concern.

Ekman and Friesen [EF74] carried out a study to evaluate how people control facial and

bodily expressions during deception. Participants consisted of twenty-one female nursing

students at the start of their studies. The participants were video recorded while viewing

a stress film and a pleasant film separately. During the stress film the participants were

instructed to try to convince an interviewer that they were viewing a pleasant film. The

same instructions were given when the participants really were viewing the pleasant film. In

questioning the participants after the deception task, the majority (17 out of 21) reported

that they focused on trying to control facial expressions more often than bodily expressions.

Furthermore, in the same study, Ekman and Friesen hypothesised that when behaviour

is appraised by observers as either deceptive or honest, observer ratings for the body will be

more accurate than ratings for the face. Using the videos collected in the first part of the

study, judgment tasks were implemented in which observers were asked to rate the recordings

of the nonverbal behaviour as either deceptive or honest. The recordings consisted of face

only and body only samples. 103 university students participated. The results showed

significantly higher recognition rates for the body (63.5%) than for the face (47.69%) when

the judgments indicated deception. These results attest to the need for recognising bodily

information as well as facial information. As stated by the authors, the necessity now is to

measure and identify the specific body information exhibited during each of the tasks.

Studies have also examined the role played by the body in communicating emotions when

human observers are presented with affective displays containing a combination of facial
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Figure 2.5: Examples of the congruent and incongruent face and body posture images
evaluated in [MvHdG05].

expressions and posture or movement. In agreement with a study by Ekman and Friesen

[EF69a], McClenney and Neiss [MN89] hypothesised that the body may be a less controllable

channel of communication and thus is susceptible to spontaneous affect leaks. McClenney

and Neiss’s study examined recognition accuracies of happiness, sadness and anger. The goal

was to ascertain the recognition rates of these emotions when the stimuli contained either

face only or body only information. The participants, 36 female undergraduate students,

were asked to relive either a happy, sad or angry experience from their lives after which

an interview session was videotaped. A group of 37 undergraduate students were recruited

to view the video recordings and rate them on a five point Likert scale for the emotions.

The results on the comparison between the communication channel viewed by the observers

showed that sadness (F:(5, 175) = 5.69, p < .01) and anger (F:(5, 175) = 8.41, p < .01)

were more accurately recognised from body information than from facial information with

no differences seen for happiness. The authors attributed the recognisability of anger to the

symbolic gesture of clenched fists.

According to studies by de Gelder and colleagues, body posture may also provide more
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information than the face in the case of fear and anger [MvHdG05] and fear and happiness

[VdSRdG07]. In an article by de Gelder [dG06] the author postulates that for fear specifi-

cally, by evaluating body posture, it is possible to discern not only the cause of a threat but

also the action to be carried out (i.e., the action tendency), while the face communicates only

that there is a threat. In a neuroscience study considering both fear and anger, de Gelder

and colleagues [MvHdG05] examined the significance of emotional body posture on facial

expression recognition of incongruent displays. The authors hypothesised that facial expres-

sion recognition is directly affected by affective bodily expressions that are presented at the

same time. Sets of corresponding and opposing, realistic-looking fear and angry face-body

images (e.g., Figure 2.5) were created using photographs. The body stimuli were created

from the researchers’ own, previously used data of individuals displaying a wide variety of

arm positions. The face stimuli were taken from Ekman and Friesen’s database [EF76]. The

same face and body stimuli were prepared as individual, separate stimuli to create a control

condition. Twelve observers participated in the study which comprised two experimental

conditions. The compound face-body stimuli were used in one condition and the individual,

isolated stimuli (e.g., face or body only) were used in the control condition. The observers

were instructed to evaluate the emotion displayed by the face for the compound stimuli

(and the individual stimulus in the single stimulus condition). The behavioural findings

indicate that when the affective information displayed by the two channels is incongruent,

body posture is the influencing factor over the recognised emotion. There was a significant

decrease in facial expression recognition when face and body information were incongruent

(67% with a reaction time of 840 ms) than when they were congruent (81% with a reaction

time of 774 ms). The results were replicated by de Gelder and colleagues in a more recent

study [VdSRdG07] aimed at extending the set of emotions by investigating fear and happy

congruent and incongruent face-body images. Using a newly developed set of images and

a similar method as described above, compound stimuli were created as a five step contin-

uum from fear as one extreme morphing into happy as the other extreme. Again, observers

were asked to evaluate the emotion expressed by the face only. The results showed that
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the affective information displayed by the body has a significant affect on the affective state

recognised from the face.

Preliminary studies by Pollick and colleagues [PPJ02][PPM04] examined high, low and

neutral saliency facial expressions (saliency was determined according to recognition accu-

racy) combined with motion captured arm movements representing knocking motions for

angry, happy, sad and neutral. The facial expression information was computer generated,

and was obtained from a pre-existing database. In one condition, affective face information

was paired with a neutral body and vice versa. In the second condition, face and body

information were congruent. The results showed that when the modalities were viewed

separately, the movement information for angry was more heavily weighted than facial in-

formation [PPJ02] and that angry knocking motions were perceived as more intense and

with higher recognition rates than low saliency angry facial expressions [PPM04].

As discussed in this section, the body in general appears to be a sufficient nonverbal com-

munication channel from which affective information can be accurately recognised. In the

following section, as suggested by Ekman and Friesen [EF74], the discussion turns to studies

that have examined individual elements of bodily information to which the recognition of

particular affective states may be attributed.

2.3 Mapping Bodily Posture and Movement into Affect

What type of information about the body is necessary for recognising the affective state

displayed? According to a neuroscience study by Giese and Poggio [GP03], there are two

separate pathways in the brain for recognising biological information, one for form informa-

tion (i.e., the description of the configuration of a stance) and one for motion information.

Findings of neuropsychological and neurophysiological research indicate that form informa-

tion can be instrumental in the recognition of biological motion through point-light displays

[HH06][PWD06].

A recent study by Atkinson and colleagues [ADGY07] determined that both form and



50

(a) (b)

Figure 2.6: (a) Full-light and (b) patch-light examples. Taken from [ATD04]

motion signals are assessed for affect perception from the body. Participants viewed short

clips of people acting out specific emotions as well as displaying affect through everyday

actions such as bending and walking, in either full-light (Figure 2.6(a)) or patch-light (Fig-

ure 2.6(b)).1 The clips were shown upright and upside-down, forward-moving and reversed.

Results showed that for all conditions, affect could be recognised at above chance levels.

However, recognition rates were significantly lower for the upside-down, reversed, patch-

light displays, indicating a difficulty in recognising a human form when the information is

presented in a non-human-like configuration. The authors conclude that these results indi-

cate the importance of form-related, configurational cues of posture for recognising emotion.

Many psychological studies over the decades have examined bodily configurations to

evaluate if specific features of the body can be identified that may be attributed to the

recognition of specific affective states. These studies have sought to understand some of

these features according to two main levels of bodily detail. Several studies have focused on

gross body configurations while fewer studies have focused on the role played by fine-grain,

individual postural features. Overall details of some of these studies are listed in Table 2.2.

Table 2.3 lists the specific affective states and features examined in each study. The study

by Atkinson and colleagues [ADGY07], described in the previous paragraph is listed in the

1In full-light conditions, the entire stimulus is visible. In patch-light conditions, the stimulus informa-
tion is only partially preserved [ADGY07].
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Table 2.4: The discriminating features for the two affective states studied in [AWH92]

Aronoff et al [AWH92]

Affective states Discriminating features
Warm Roundedness (and lessened diagonality and angularity)

of both arms and movement, more static and moving
arabesques

Threatening Diagonality and angularity of both arms and movement,
more diagonal poses, more straight arms

second to last row of Table 2.2.

Using acted ballet movements and postures Aronoff and colleagues [AWH92] (first row of

both Tables) concluded from their study that angular and diagonal postural configurations

can be adopted to signify threatening behaviour, while rounded postures are intended to

demonstrate warmth (results are summarised in Table 2.4). Other studies have acknowledged

the important role that leaning direction plays in the perception of a particular affective state

[HR83][Meh68][Jam32]. In James’ behavioural study [Jam32] (second row of both Tables),

he discovered the importance of more specific whole body features of posture (summarised

in Table 2.5), such as leaning direction and openness of the body and head position, such

as up, down, and tilted for discriminating between a variety of affective states.

Listed in the third row of Tables 2.2 and 2.3, Wallbott carried out a study to examine

which postural cues of body configurations afford humans the ability to distinguish between

specific emotions. Wallbott videotaped and audio recorded 12 professional actors displaying

14 emotions (elated joy, happiness, sadness, despair, fear, terror, cold anger, hot anger,

disgust, contempt, shame, guilt, pride and boredom) from scenarios aimed at eliciting the

emotions. A group of observers viewed the 224 recordings and coded all bodily activity

displayed. Two additional coders were recruited to construct a set of postural cues that

defined the configuration of the body, referred to by Wallbott as ‘a category system’, from

the previous coders’ descriptions. The system consisted of body movements, postures and
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Table 2.5: The discriminating features in [Jam32]. Adapted from James [Jam32]. a) The weight of
the body is thrown on the forward foot. Weight on the back foot is both unnatural and incongruent.
b) Arms backward is unnatural and when in that position are either ignored by the observer or else
their meaning is the same as ‘arms at the side.’ Body weight is on the rear foot or is equally
distributed on both feet with wide base. c) Bent knees change the withdrawal to a contraction
which is further specified as weakness, helplessness. d) The feet and arms point in the direction of,
and the trunk and head away from, the observer

James [Jam32]

I. Trunk, head, and arms forward, knees straighta

a. Approach
with palms up acceptance, offering, coaxing, supplica-

tion, beseeching - all with humbleness

with palm outward active repulsion, avoidance, holding off,
opposition, command, disapproval

with palms down soothing, calming, blessing; groping, bal-
ancing in movement; with slightly bent
knees, reaching for support

b. Contraction
palms up servitude, surrender (the figure offers it-

self)

palms outward dejection, grief, anguish, shame, defeat
(with a refusal of aid or sympathy)

II. Trunk and head backward, arms forward, knees straightb

a. Withdrawalc
palms up prayer, proud offer or acceptance

palms outward extreme negation, exaggerated refusal,
repulsion, disgust; with bent knees sud-
den recoil, horror, withdrawal from
a dangerous position, arrogant refusal,
pride

palms down blessing, proud dismissal, refusal

b. Expansion palms up joyful offering or receptiveness, welcome
with great pride; with knees bent prayer

III. Trunk, head turned, arms forwardd

a. Withdrawal palms forward emphatic refusal, utter disgust or scorn
or disdain, the object of observer is cast
aside
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Table 2.6: The discriminating features reported for 11 of the affective states studied in
[Wal98]. (x = no significant results reported)

Wallbott [Wal98]

Affective states Discriminating features

Cold anger Lateralized hand/arm movements, arms stretched out
frontal

Hot anger Lifting shoulders, lateralized hand/arm movements,
arms stretched out frontal, hands opening/closing

Boredom Collapsed upper body, head bent backwards

Contempt x

Despair Shoulders forward, hands opening/closing

Disgust Shoulders forward, head downward, arms crossed in
front

Fear Shoulders forward, hands opening/closing

Guilt x

Happiness x

Elated joy Lifting shoulders, head bent backwards, arms stretched
out frontal, hands opening/closing

Pride Head bent backwards, arms crossed in front

Sadness Collapsed upper body

Shame Collapsed upper body

Terror Arms stretched sideways
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movement quality. Inter-observer reliability was determined by computing the percentage of

agreement between the two coders. The categories for which >75% agreement was obtained

were considered in the analysis of the category system. One-way ANOVAs were implemented

to detect if differences exist in how people evaluate posture in order to distinguish between

emotions and the relevance played by the features in discriminating between emotions. The

results showed significant differences for 17 of the 26 categories. The results are summarised

in Table 2.6 and confirm the importance of and information carried by specific postural

cues to discriminate between emotions. However, Wallbott himself stated that this was

an initial study and asserted that additional studies need to be carried out. In particular,

Wallbott stated the need for studies examining spontaneous (e.g., non-acted) expressions

and cross-cultural studies.

In another study, Coulson [Cou04] (shown in the fourth row of Tables 2.2 and 2.3) at-

tempted to ground basic emotions into low-level static features that describe the configura-

tion of posture. Computer generated avatars expressing Ekman’s [EF69b] six basic emotions

(angry, fear, happy, sad, surprise, and disgust) were employed to examine postural elements

necessary for attributing a specific affective state to body posture. His proposed body de-

scription, summarised in Table 2.3, comprises six joint rotations (head bend, chest bend,

abdomen twist, shoulder forward/backward, shoulder swing, and elbow bend). Judgment

survey results showed that concordance rates between observers reached 80% for some pos-

tures in associating angry, happy, and sad labels. Coulson then used a statistical method to

determine the role each joint rotation played in determining which emotion label was asso-

ciated to each posture, and found that specific bodily features could be used to differentiate

between the emotions studied. Refer to Table 2.7 for a complete list of which features were

predictive for which emotions. While the overall findings were above chance level (16.7%)

and all of the postures were kinematically plausible, according to Coulson himself, “the

complexity of the stimuli meant that some postures looked rather unusual” [Cou04].

DeMeijer [dM89], listed in the fifth row of Tables 2.2 and 2.3 carried out a study to ex-

amine two questions: i) if specific gross body movements were indicative of specific emotions
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Table 2.7: The discriminating features reported for the affective states studied in [Cou04]

Coulson [Cou04]

Affective states Discriminating features

Anger Backward head bend, absence of backward chest bend,
no abdominal twist, arms raised forward and upward.

Fear Backward head bend, no abdominal twist, forearms
raised, weight transfer either backward or forward.

Happiness Backward head bend, no forward movement of the chest,
arms raised above shoulder level and straight at elbow.

Sadness Forward head bend, forward chest bend, no abdominal
twist, arms at side of the trunk.

Surprise Backward head and chest bends, any degree of abdom-
inal twisting, arms raised with forearms straight.

and ii) which movement features accounted for these attributions. To this aim, seven move-

ment dimensions, listed in Table 2.3, were utilised. The movements of three dancers were

videotaped. The dancers did not explicitly enact the emotions, instead, they were instructed

to perform specific movements derived from variations of the movement characteristics. As

the face was not blurred for the judgment task, the dancers were instructed to maintain a

neutral facial expression. A separate group of observers viewed the movements and judged

each according to 12 four-point scales. The instructions were to rate each movement accord-

ing to its compatibility with each emotion (i.e., nine emotions: anger, contempt, disgust,

fear, grief, interest, joy, shame, surprise; three emotional attitudes: admiration, antipathy,

sympathy). Answering the first research question of if specific movements denoted specific

emotions, the results showed that “all emotion categories, except disgust were attributed to

certain movements” with admiration attributed to the most (15) and interest attributed

to the least (3) [dM89]. The results for the second question, summarised in Table 2.8, did

indeed indicate that specific features could be attributed to specific movements. Trunk
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Table 2.8: The discriminating features reported for the affective states studied in [dM89].

de Meijer [dM89]

Affective states Discriminating features

Anger Bowing, slow, strong, downward, backward, opening
Contempt Bowing, backward
Disgust Bowing
Fear Bowing, downward, backward, strong, fast
Grief Bowing, slow, downward, closing
Interest Stretching, forward, light, slow, opening
Joy Stretching, upward, strong, fast, forward, open
Shame Bowing, downward, light, slow, backward
Surprise Stretching, backward, fast
Admiration Stretching, upward, forward, open
Antipathy Bowing, backward
Sympathy Stretching, forward, open, light, slow

movement, stretching or bowing, was the most predictive for all emotions except anger. In

fact, trunk movement was found to distinguish between positive and negative emotions.

Other studies have focused on classifying affective body movements according to affective

dimensions. With a focus on recognising emotion from biological motion, a study by Paterson

and colleagues [PPS01] (the last row of Table 2.2) aimed to map part of the body, head and

arm movements, to an affective space. Their aim was to examine not only how well affect

may be recognised but also the structure of the representation of affect. To begin, two actors

were asked to read stories aimed to elicit 10 affective states (afraid, angry, excited, happy,

neutral, relaxed, sad, strong, tired and weak), after which the actors were motion captured

while performing drinking and knocking motions. Each action was repeated three times by

each actor for each of the affective states. They first obtained human observer judgments

of the entire motion corpus using a forced choice experimental design. The motions were

viewed as point light displays from a sagittal perspective. The results showed that the

overall recognition rate across the 10 emotions was a mere 30% but still well above chance



59

level (10%). The low performance of the participants was attributed to some motions being

misjudged as a similar movement, e.g., weak movements were often judged as either weak,

sad or tired. To construct the affective space, individual difference scaling (INDSCAL) was

applied to a set of dissimilarity measures obtained from the observer judgments. A 2D

affective space was obtained. Approximately 87% of the variance was accounted for by the

two dimensions (70% for dimension one and 17% for dimension two). The mapping was

shown to reflect a circumplex model of affect with levels of arousal depicted on the first

dimension and levels of valence depicted on the second dimension. These results show that

similar to research on the structural representation of experienced affect, valence and arousal

dimensions are also used by human observers when describing affective posture expressions.

The high percentage of variance covered by the arousal dimension may indicate that arousal

is considered more important by the observers.

Overall, the results of these studies show that particular features of bodily expressions

can indeed be reliably attributed to a variety of different affective states. However, there are

still some important issues to tackle. In particular, as shown in the acted/non-acted column

of Table 2.2, all of the studies except Coulson’s evaluated bodily information that had been

acted. Coulson used computer generated postures, which may be considered contrived in

some way instead of natural. Another issue to tackle is how to determine the ground truth

labels of the affective expressions. A more detailed discussion on both of these issues is

provided in Section 2.6.

The discussion in this section has focused on research which has attempted to identify

cues used to map body posture and movement into affect. From a different perspective,

research in dance for example, has focused on defining a set of posture and motion cues

(e.g., an affective language) that are strongly affective. One model in particular that was

created specifically as a method for mapping affect into human movement is Laban Move-

ment Analysis (LMA)2 created by Rudolph Laban [vL71]. LMA considers general features

of human posture and movement, and comprises four key components for describing human
2LMA is Laban’s entire work. Within LMA he defined a system for annotating bodily expressions, called

Kinetography. From Kinetography, Labanotation was developed by Ann Hutchinson [Hut87]
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movement, Body, Effort, Shape, and Space. The Body component describes the body itself

in terms of which parts are moving. The volume of the movement is specified in the Space

component, while the general form of the body is indicated through the Shape component.

The Effort component identifies the dynamic aspects of the movement, such as force, speed,

etc. Rozensky and Feldman-Honor [RFH82] cite a strength of the system being that it “ac-

curately depicts quantitative and qualitative aspects of body movement such as magnitude of

movement, direction of movement [and] some spatial arrangements”. As weaknesses, the

authors state that the system “does not provide for the precise quantification of small-scale

NVBs 3” and that it is most suitable for dance movements. Although the use of LMA

is a positive start for creating computational models of affective body expressions, it is

not enough. Research is still required to validate the mapping of affect into more subtle,

non-dance movements in order to be accessible to a wide variety of situations.

2.4 Are There Universal Aspects of Affect Expression

and Recognition?

“Perhaps no issue has loomed larger or permeated the study of bodily communi-

cation than the extent to which such expressions are universal, which implies that

they have a common genetic or neurological basis that reflects an evolutionary

heritage shared by all humans, or relative, which implies that their form, usage,

and interpretation are tied to individual cultures and contexts” [BJM+05].

As Picard [Pic98] points out, the manner in which humans convey emotion or affective

messages in general is affected by many factors, such as age, gender, posture, culture, and

context. One factor that is being given significant attention by the affective computing

community is culture (defined as “a shared system of socially transmitted behaviour that

describes, defines, and guides people’s ways of life” [Mat05]). Indeed, the need for under-

standing how different people and cultures recognise and express affective body language
3Nonverbal behaviours
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has become more and more important in a number of real-life affective computing situations.

For example, embodied museum agents are gaining much attention [KGKW05][LAJ05]. Due

to the diversity of people visiting, museums are a particularly appropriate arena in which to

have an agent capable of recognising differences due to personality, culture, etc. E-Learning

systems may also benefit by taking into account various human factors. Research in the

UK found high dropout rates for eLearning due to ‘culturally insensitive content’ [DM06].

As systems replace humans, it is important that how they express and perceive non-verbal

behaviours in a multi-cultural community is as natural as possible so that the user is not

made uncomfortable.

There is evidence that the way in which affective states are expressed and controlled

[MF69], as well as the interpretation of affect [KEGB03] is shaped by culture. Many re-

searchers have used cross-cultural emotion recognition studies to validate evidence in favor

of emotion universality [EMA+02]. For some emotions, there is cross-cultural support for

the universality of many modes of non-verbal behaviour, including face, voice and body ex-

pressions, as well as changes in a person’s physiology [Mes03]. However, the majority of the

research on emotion universality has concentrated on the recognition of facial expressions

using still photographs [Ekm94][EMA+02][Rus94]. An issue with this method is that the

culture of the person in a photograph may bias the observer’s judgments. The relationship

between the expresser’s culture and the perceiver’s culture affects the perceiver’s judgments

[EMA+02] as people may have preconceived ideas about other cultures and how they behave.

Facial expressions

In the realm of facial expressions, much research has been conducted comparing emotion

differences between various cultures. Friesen [Fri72] reported cross-cultural differences in

comparing the facial expressions of Japanese and American participants while viewing both

neutral films and films intended to cause stress. As a support to the universality of facial

expressions, it was shown that both groups expressed almost exactly the same facial expres-

sions when watching the films alone. However, differences were noted between the groups
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when the films were viewed with an authority figure present. The Japanese controlled their

facial expressions more than the Americans. In particular, negative emotions were covered

with a smile. These results are indicative of social display rules, meaning that in some

contexts, facial expressions may be more controlled in some cultures than in others.

Tsai and colleagues [TCDFBP02] found more similarities in facial expressions than differ-

ences between European Americans and Hmong 4 Americans in facial expressions of relived

emotions. The participants consisted of 50 Hmong American and 48 European American

undergraduate students. The participants were asked to relive an extreme emotional experi-

ence after receiving a label and a description of six emotions: anger, disgust, happiness, love,

pride and sadness. The duration of the relived emotion was signalled by the participants

by the continuous pressing of a button. After reliving each emotion, the participants were

asked to report the intensity of the felt emotion and the level of how well they were able

to relive the emotion. The videotaped facial behaviour was then scored by three qualified

FACS coders. The coders were not aware of the particular intended emotion they were

scoring. After scoring, only the target behaviours (i.e., the facial expressions that would

correspond to the emotion being experienced) were examined. Statistical tests were ap-

plied to the FACS-coded facial behaviours for each emotion. The authors reported that

to their surprise, the results showed no significant differences between the two cultures in

facial displays for pride, love, disgust or sadness. The only difference found was in how often

non-Duchenne5 smiles occurred during happiness. The European Americans displayed more

non-Duchenne smiles than the Hmong Americans. As no significant results were found, the

next step would be to examine facial expressions in a natural setting instead of an acted

one. It is possible that the way they express a particular emotion is the same, but as in the

previous study by Friesen [Fri72] what differs is how they react to a particular situation,

i.e. what emotional expressions they will show in response to a certain situation and what

intensity they will express.
4An Asian ethnic group originating from the mountainous regions of southern China.
5A non-Duchenne smile is defined as an unfelt smile (as opposed to a Duchenne smile which is considered

to be a felt, or natural smile). It is believed to serve a social function and may be used to mask negative
emotions [SH98][TCDFBP02].



63

Bodily expressions

In the realm of bodily expressions, Matsumoto and Kudoh carried out two studies de-

signed to examine cross-cultural differences between Japanese and Americans in judging

posture according to a set of semantic dimensions [KM85][MK87]. Based on other research

[BNS75][MK83] (as cited in [MK87]), Kudoh and Matsumoto asserted that differences re-

ported between Japanese and Americans are almost always due to status being a more

important aspect of the Japanese culture than the American culture. “With respect to pos-

tures, the status relationship between two interactants can be a primary dimension through

which the semantic dimensions of each other’s postures are interpreted” [MK87]. Matsumoto

and Kudoh’s first study [KM85] investigated judgments on a corpus of verbal posture expres-

sions from Japanese participants. Using the same methodology, the second study [MK87]

investigated judgments from American participants. Using a principal-component factor

analysis, the researchers hypothesised that the same factors would be extracted from the

two sets of participants, but that the factor order would differ between the two cultures. The

same corpus of 40 posture expression stimuli, created by a separate group of 372 Japanese

university students [KM85], was used in both studies. The authors argued that even though

the corpus was developed in Japan, the posture descriptions were not culture-specific. To

create the corpus, the Japanese students were asked to provide written descriptions of pos-

tures from situations encountered in everyday life. Descriptions that did not correspond to

posture terms (that occurred due to the free-form nature of the instructions) were discarded,

leaving a set of 40 posture descriptions (refer to Table 2.9 for examples). Participants re-

cruited to judge the written posture expressions consisted of 686 Japanese in [KM85] and

145 Americans in [MK87]. The participants were asked to rate the posture expressions on

a five-point Likert scale for each of 16 semantic differential scale items (e.g., tense-relaxed,

relieved-anxious, dominant-submissive, etc). The results showed that same three factors

(self-fulfillment, interpersonal positiveness and interpersonal consciousness) were extracted

in both studies, yet as predicted, in a different order for each culture, indicating differences

in the importance of status between the two cultures (i.e., more important for the Japanese
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than the Americans). The order for the Japanese is as previously listed, whereas for the

Americans, Factors I and II were reversed, with interpersonal positiveness as Factor I and

self-fulfillment as Factor II. Testing the similarity of the factorial configurations by calculat-

ing coefficients of congruence [Har60] between the Japanese study and the American study,

the results showed that indeed, Factor I of the Japanese study is basically the same as Factor

II of the American study, and Factor II of the Japanese study is the same as Factor I of

the American study. While the authors found cultural differences as expected, they also

asserted that generalisability of the studies needs to be expanded and questioned whether

cultural differences would be found with posture stimuli instead of verbal descriptions of

postures.

Table 2.9: Examples of the posture expression descriptions used in [KM85][MK87].

Posture expression examples

1. Hanging one’s head 6. Shaking a fist
2. Leaning back 7. Putting one’s hands together
3. Arms akimbo 8. Drooping one’s shoulders
4. Bowing one’s head 9. Squaring one’s shoulders
5. Leaning forward 10. Crossing one’s arms

Although not conclusive, the results of the studies presented may indicate a need for

taking culture into account in various aspects of affect recognition research, such as la-

belling, and how affect is both expressed and perceived by members of different cultures. In

particular, computational models for the recognition of affect may benefit from an under-

standing of the role culture plays in how humans express and perceive affect from nonverbal

communication modalities.

2.5 Automatic Affective Recognition Systems

Automatic affect recognition systems (summarised in Table 2.10) have focused mainly on us-

ing facial expressions [PR00a] [BLF+05][RYD94] and voice [Oud03][KF07] [YSLB03][NNT99]
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[CK98][DPW96][LNP02][Pet99] as the input modality. Only recently have systems been

built that centre on the automatic recognition of bodily expressions mono-modally [CMR+04]

[KKVB+05][PLRC02][BR07] and multi-modally [KPI04][KBP07][GP07]. Similar to the be-

havioural studies discussed in Section 2.3, most automatic recognition systems, independent

of modality, rely on corpora that have been acted. Furthermore, these systems also rely on

the actors’ labels to provide the ground truth. As will be explained in the following section,

depending on the software application and its goal, issues exist in creating affect recognition

systems that rely on actor information.

Facial expression recognition

A survey of several automatic facial expression recognition systems is presented in Pantic

and Rothkrantz [PR00a]. All of the systems presented, many of which are listed in the

upper part of Table 2.10, are centred on the recognition of the six basic emotion categories

defined by Ekman and Friesen [EF75]. The testing results for the analysis of static images

of acted facial expressions ranges from 73% to 91% for the systems listed.

A study by el Kaliouby and Robinson [eKR04] is also listed. In this study, El Kaliouby

and Robinson present an automatic recognition system for determining subtle, complex af-

fective states (agreeing, concentrating, disagreeing, interested, thinking, and unsure) instead

of basic emotions, using a combination of facial expressions with head positions along the

three rotational axes, roll, pitch, and yaw. Results of their system are well above chance

level (16.67%), ranging between 64.5% and 88.9% accuracy. As the authors consider head

gestures and facial expressions combined, they do not discuss the performance rates of the

head gestures separately. This information could be very interesting to understand compu-

tationally how much importance to place on head position.

The last study presented in the automatic facial expression recognition section is aimed

at recognising facial indicators of pain [ALC+09]. In this study, the authors investigated au-

tomatic recognition from video sequences labelled at two levels, frame-by-frame and across

the entire sequence. Their question was, how should datasets be labelled for the auto-
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matic detection of pain? This is an interesting question when considering the time, effort

and resource costs involved in building training and testing sets for automatic modelling

[ALC+09][GP06]. Choosing to label data at the frame-level sometimes means that a smaller

dataset must be used. However, labelling data at the sequence level requires less time by

observers, meaning that a larger dataset can be created. At both levels, support vector ma-

chines (SVMs) were trained after which pain prediction was determined firstly by summing

the SVM output scores for pain for the entire sequence. Secondly, a simple decision rule was

developed by varying a threshold for pain vs. no pain. While the results, unsurprisingly

according to the authors, showed higher recognition rates for labelling at frame-level (82%)

than sequence-level (77%), “more interestingly, the classifier trained with coarser (sequence-

level) labels performs significantly better than ‘random chance’ when tested on individual

frames” [ALC+09], indicating that sequence-level labelling may provide enough information

for creating automatic affect recognition systems.

Voice recognition

Automatic voice recognition systems are presented in the second section of Table 2.10. In

Yacoub et al. [YSLB03], a comparison of recognition accuracies for three different machine

learning techniques in recognising acted affect from voice was carried out. They considered

a set of 15 affective states which included both basic and non-basic emotions. In the very

best testing case, a 94% recognition rate was achieved for distinguishing between only two

states, hot anger and neutral. This result is not entirely surprising since hot anger is highly

emotional while neutral is devoid of emotion. Accuracy rates began to decline when more

emotions were added. For example, recognition decreased significantly to 57% when consid-

ering three classes, neutral and sad as one class, hot anger, and happy. Recognition for the

entire set of 15 affective states was extremely low at a mere 8.7%, however this is still above

chance (6.7%). Other affective voice recognition systems reported accuracies ranging from

60% to 77% for two or four affective states [DPW96][LNP02][Pet99].
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Bodily expression recognition

The majority of today’s affective recognition systems of body posture and movement (pre-

sented in the second to last section of Table 2.10) are based on LMA [vL71], and have focused

on extracting emotion information from dance sequences [PPKW04][CTV02] [CMR+04]

[KOIH04].

Camurri and colleagues [CMR+04][CLV03] examined cues and features involved in emo-

tion expression in dance for four affective states, anger, fear, grief and pride. The corpus

consisted of the same dance performed by five dancers four times each with a different

affective state expressed each time. The video clips were then processed, removing facial

information, and a set of motion cues (i.e., the amount of detected motion, a measure of the

amount of the body’s contraction/expansion, a measure of upward movement, the direction

and length of the motion trajectories, and the velocity and acceleration of the motion trajec-

tories) was extracted based on Laban’s Theory of Effort [vL63]. Decision trees were chosen

to build and test automatic recognition models. Testing was carried out using five testing

sets extracted from the data. The results for the best decision tree model built on testing

data ranged between 31% and 46% with the average across the four emotions attaining a

mere 40% correct classification. The authors pointed out that even though these results

seem low, the recognition rate for each emotion was well above chance level. The authors

also assert that, in order to interpret automatic classification rates, they should “be consid-

ered with respect to the rates of correct classification from spectators who have been asked

to classify the same dances” [CMR+04]. In this case, the recognition rate for the human

observers was only 56%. The recognition of fear was the worst for the model built on the

test data, achieving below chance level classification rates. Fear was most often misclassified

as anger. This is an intriguing result because body movement was used as opposed to static

postures, and as postulated by Coulson [Cou04], dynamic information may help to increase

recognition rates of fear in particular. Other automatic misclassifications occurred between

joy and anger, and grief and joy. The misclassification of grief as joy is interesting given the

authors’ examination of the quality of motion feature, which showed joy movements to be
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very fluid and grief movements to be quite the opposite.

Another dance movement based automatic recognition system is that of Kapur et. al.

[KKVB+05]. In this study, a mix of professional and non-professional dancers was employed

to enact four basic emotions (anger, fear, joy and sadness) through their body movements

with no constraints placed on them. The body movements were recorded with a Vicon

MXTMmotion capture system. A human perception study was implemented to validate the

affective dance expressions. Using a forced-choice experimental design, the human observers

correctly classified 93% of the 40 point-light dance movements. Next, a set of dynamic

features based on velocity and acceleration was extracted from the numeric motion capture

data. The feature data was then used to build automatic recognition models with five

different machine learning classifiers. The automatic recognition rates varied between 62%

to 93% depending on the testing method used (i.e., 10 fold cross-validation and Leave One

Subject Out (LOSO)).

The work involving LMA to describe the body for building affect recognition systems is of

interest, however, dance movements are exaggerated and purposely geared toward conveying

affect. Body movements and postures that occur during day-to-day human interactions and

activities are typically more subtle and not overtly emotionally expressive.

Turning to non-dance-based automatic bodily expression recognition, Pollick and col-

leagues [PLRC02] carried out a study in which they compared automatic recognition model

performance with human recognition performance for affect recognition to examine differ-

ences between the two in recognising different movement styles; are human observers able

to make use of the available movement information. 1560 point-light displays of arm move-

ments representing knocking, lifting and waving actions (26 actors) for two affective states,

angry and neutral were used as the experimental stimuli. 1248 movements were used to train

the neural network and 312 movements were used as the testing set for both the human ob-

servers and the neural network. Eighteen observers who were not aware of the purpose of

the study were asked to view the movements and judge the affect displayed as neutral or

angry. The average d’ value achieved was 1.43. Using the same testing set of movements, the
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average d’ achieved by the neural network was around 3 - almost twice that of the human

observers. These results indicate that the system was able to discriminate between affective

states more consistently than the human observers.

Bernhardt and Robinson [BR07] have built affect recognition models for non-stylised,

acted knocking motions using Pollick et al’s motion capture database [MPP06]. They con-

sidered three basic emotion categories (angry, happy and sad) and neutral. They make the

point that not only is affect readily seen in body movement, but individual idiosyncrasies

are also noticeable, which can make classification more difficult. To handle these differences,

after segmenting the motions, personal biases were subtracted by taking an average over all

the motions and removing that from the motion features. SVMs were used to build recogni-

tion models using a LOSO cross-validation method. After training, the classifier was tested

on the motion samples from a single actor (approximately 3.5% of the total set of samples).

The results showed a 50% recognition rate for the motions without removing the personal

biases, while recognition significantly increased to 81% using the unbiased motions. To vali-

date the performance of their recognition models, the results were compared with the results

of the human observers from Pollick et al’s study [PPBS01] aimed at affect recognition of

knocking motions from point-light displays and video conditions since the same corpus was

used. The results indicated that the recognition models built in Bernhardt and Robinson’s

[BR07] study achieved recognition rates (50% for biased and 81% for unbiased) similar to

the humans of Pollick et al’s [PPBS01] study (59% when viewing point-light stimuli and

71% when viewing video stimuli). Based on these results, Bernhardt and Robinson con-

cluded that “even humans are far from perfect at classifying affect from non-stylised body

motions”, suggesting that creating a 100% accurate affect recognition system is unlikely

given that humans are not 100% accurate.

Multimodal recognition

The last section of Table 2.10 lists multimodal automatic affect recognition systems. Several

of these systems include body posture or movement information as one of the modalities ex-
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amined. Two of these systems have been designed by Picard’s group at MIT [KMP01][KPI04]

[KBP07]. Focused on non-acted affect, their system models a more complete description of

the body, attempting to recognise three discrete levels of a child’s interest (high interest, low

interest and taking a break, e.g., ‘refreshing’) [KPI04] and self-reported frustration [KBP07]

from postures detected through the implementation of a chair embedded with pressure sen-

sors (shown in Figure 2.7), facial expressions, and task performance while the child used a

computer to solve a puzzle. Their postures were defined by a set of eight high-level (coarse-

grained) posture features (i.e., leaning forward, slumping back, sitting on the edge). Of the

three types of input examined, in [KPI04] the highest recognition accuracy was obtained

for posture activity (55.1%) over game status (33%) and individual Facial Action Units6

(32.8%-49.7%). Accuracy rates for posture alone as an input modality for recognising frus-

trated were not reported in [KBP07]. A potential issue exists with using a chair to sense

posture. It means that the recognition situations are limited to specifically seated contexts.

Technologies today are ubiquitous; not limited to only seated situations. Furthermore, as

the posture description is dependent on seated postures, important information from the

body may be missing. For instance, at the time of their research in 2004, there were no

features to describe the position of the head, hands or feet. More recently however, in 2007,

while still employing a posture sensing chair, Picard’s group added head position (shown by

[Wal98][KdSBB06][eKR04] to be an important feature for discriminating between affective

states) and velocity to the list of recognised features in the new version of the system aimed

at recognising learner frustration (e.g., frustrated or not frustrated) [KBP07].

The automatic recognition system of Gunes and Piccardi [GP07] is bi-modal, recognising

video sequences of facial expressions and upper-body gestures. They examined the automatic

recognition performance of each modality separately before fusing (comparing feature level

fusion with decision level fusion) information from the two modalities into a single system.

They obtained video recordings of face and body expressions for six affective states (anger,

anxiety, dusgust, fear, happiness and uncertainty) from four actors. For both modalities,

6A Facial Action Unit is “a visually distinguishable and anatomically based unit of facial muscle move-
ment” [TCDFBP02].
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Figure 2.7: The sensor chair used in [KMP01][KPI04][KBP07]. To detect posture, it uses
two sheets of force sensitive resistors. One sheet lays across the seat and one sheet lays
across the back. From [KMP01].

the affective expressions to be enacted were scripted according to cues discussed in the

studies of Coulson [Cou04] (for body expressions) and Burgoon et al. [BJM+05] (for facial

expressions). After extracting and reducing a feature vector for each modality separately,

machine learning classifiers were applied to build automatic recognition models. The results

reported in the article were for BayesNet from which the best results were obtained. As

mono-modal systems, the automatic recognition performance was highest for the upper body

sequences (89.90%), compared to the facial expression sequences (76.40%). The authors

attributed this outcome to the fact that facial movements are much smaller in comparison

to the upper body movements defined, and that even though high resolution video was used,

it may not be sufficient enough for perfect recognition. The results on two bi-modal systems

were presented: one with feature level fusion (94.02%) and one with decision level fusion

(91.10%). The issue with the systems presented, both mono- and bi-modal, is that the

expressions for each affective state, for each modality, were scripted, and therefore the high
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automatic recognition rates are not surprising. A question that needs to be addressed now

is, what happens when spontaneous, unscripted expressions are used, both for acted and

non-acted expressions?

As evidenced by the results presented throughout this section and listed in Table 2.10,

there are significant variations between the studies that makes it difficult to compare them

properly. The following section begins to tackle some of the issues that affect the creation

and evaluation of automatic affect recognition systems.

2.6 Methodological Issues in Creating and Evaluating

Affect Recognition Systems

This section focuses on two main issues that require consideration for creating affective

recognition systems. First, how should the ground truth of affective expressions be deter-

mined? Second, what type of affective expression corpora should be used and how to obtain

them?

Ground truth labelling

How should the ground truth of affective expressions be determined? What should be

considered the ground truth label, the observer’s judgment or the expresser’s label? The

problem is to know exactly what the expresser truly feels. Furthermore, if the affective

expressions are naturalistic, i.e., non-acted, there may be no ‘known’ label.

In both acted and non-acted situations, self-report methods are commonly used in psy-

chology based research for labelling an expresser’s affective state. These techniques may be

implemented either during the task or post-task. During the task, pop-up screens or ‘talk-

aloud’ techniques may be implemented for asking participants about their affective state

either at pre-determined points or any point at which the participants feel a change in their

affective state.
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Figure 2.8: Self-Assessment Manikin on which valence, arousal and dominance scores are
recorded. From [BL94].

Post-task methods include questionnaires or interviews. Questionnaires may be either

verbal or visual. Verbal questionnaires consist of written statements, open-ended questions,

or a list of items to be rated. Commonly used list-based questionnaires include The Mul-

tiple Affect Adjective Check List (MAACL) [ZL65] and the Positive Affect/Negative Affect

Measure (PANAS) [WCT88]. Linguistic issues and cross-cultural compatibility of terms can

be a problem with verbal self-report measures in particular. The use of visual self-report

methods solve this issue as they employ graphical representations of affective states instead

of affect terms. The self-assessment manikin (SAM) [Lan80], depicted in Figure 2.8, is

an example of a visual self-report method in which users are instructed to rate a series of

graphical characters displaying different levels of valence, arousal, and dominance.

While self-report techniques may provide a fairly quick way to gather affect response

information, issues and limitations exist. A limitation with during task self-report methods

is that they interrupt the expresser and may alter her/his experience, thus tainting the

information obtained. A limitation with post-task self-report methods is that they depend

on the expresser’s memory. Picard points out that “self-reported feelings at the end of a task

are notoriously unreliable” [KBP07]. The person may not remember what s/he was feeling

at a specific moment or s/he may provide a re-appraisal of the situation, therefore important
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information may be lost. The person may be too embarrassed to view and/or judge their

own behaviour. In a recent paper by Afzal and Robinson [AR09] in which they carried out

a data collection exercise for naturalistic data, the authors attempted to obtain post-task

self-report labels of facial expression. The encoders (i.e., the experiment participants from

which the facial expression data was recorded) were asked to view 20 second intervals of video

recordings of themselves and assign an emotion label from a predefined list of labels. The

self-report task was abandoned because many of the encoders rushed through the labelling

process, embarrassed at watching themselves. Instead, the authors chose to obtain labels

for the facial expression data from external coders.

A more appropriate path to determining the ground truth of affective expressions may be

to conduct human perception studies and base the ground truth label on agreement levels

obtained from groups of observers. By averaging agreement over repeated subsets of the

observers, some of the errors may be eliminated. The group of observers would depend on

the application into which the affect recognition software is to be integrated. For instance,

for a video game situation, the observers could be non-experts in order to create a system to

take the place of a human interaction partner. For an eLearning situation, determining the

ground truth according to expert observers may be more advantageous. Indeed, teachers

are used to determine ground truth labels in the study measuring levels of interest described

in the previous section [KPI04].

Another labelling method being employed in the artificial intelligence [FH05][Doy04]

and machine learning [Yan09] fields (and more recently in affective computing) is preference

learning. In the field of automatic affect recognition it is used to construct computational

models of affect based on users’ preferences. To this aim, human observers are asked to

view two stimuli and express their preference for one stimuli over the other. In the case of

affect recognition, the preference is for one affective label over another (“pairwise emotional

preferences” termed “comparative affect analysis” [Yan09]). For the automatic recognition

process, the stimuli is not assigned a single label, but instead is labelled as a set of preferences

for one particular label over another.
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Affective expression corpora

An issue surrounding affective expression corpora is whether to use acted or non-acted cor-

pora. Acted affective corpora are signified as actions that have been deliberately and know-

ingly expressed, whereas non-acted or naturalistic affective corpora are expressions that have

been expressed naturally, without intention for the experimental procedure. The longstand-

ing argument about acted vs. non-acted affective corpora is about the reliability of using

acted stimuli for studying emotion/affect perception [Rus94][Wal98]. The early affective

databases were acted or posed and focused on face and voice [JL02][KS00][LH97][YSLB03].

The difficulty and necessity of obtaining naturalistic, non-acted stimuli has been discussed

for more than two decades, being described as “one of the perennial problems in the sci-

entific study of emotion” [WS86]. Using material obtained from actors who are explicitly

instructed to express specific emotions or affective states is considered to be unnatural and

contrived/artificial [SSB+04]. The research trend is now on naturally occurring affective

expressions (yet, they are still focused mainly on facial expressions) [ALC+09][AR09].

If acted data is used, the issue that arises is whether to use professional actors, or

people who do not have any theatrical training, often referred to as non-professional actors.

Using non-professionals may help to eliminate the possible exaggeration (i.e., overacting)

that is said to occur with professionals due to training [MPP06], which limits variations

in intensity levels. Using non-professional actors, it is also thought that a larger variety of

affective expressions may be obtained [FT05][MPP06]. However, there are still issues with

using non-professional actors; the affective expressions may still be stereotypical or perhaps

not at all expressive. Moreover, the non-professional actors may not be aware if/when they

use a modality different to the one being studied.

If non-acted data is used, the issue that arises is how to obtain the data. It has been

argued that emotions expressed in a lab setting may not be very natural [SSB+04]. How-

ever, it is also recognised that it is very difficult to obtain affective expressions as they occur

in real-life situations due to ethical considerations, etc. Recognising that there are issues

with systems trained on acted and/or exaggerated data which are intended for everyday
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situations, new corpora have been created for naturalistic data [BFH+03]. However, cur-

rently available naturalistic affective corpora still are focused mainly on dialog and speech

[ADK+02] [BHS+04][Cam02][DCCC03][FSS+00].

As described in Sections 2.3 and 2.5, until recently, much of the research on body posture

has focused on dance, often using video recordings of ballets and other dance performances

for analysis of affective behaviour. This means that research groups aiming to examine more

natural, day-to-day affective bodily behaviours are required to create their own corpora. In

comparison, although this is not a comprehensive list, there are several databases of affective

facial expression corpora available, such as:

• Pictures of Facial Affect [EF08].

• The Binghamton University 3D Facial Expression Database [YWS+06], found online at

[YWS+08].

• The Japanese Female Facial Expression (JAFFE) Database [KLG08].

• The MMI Face Database [PVRM05], found online at [PVRM08].

• The Mind Reading DVD [BCGWH08].

• The Psychological Image Collection at Stirling (PICS) [pic08].

• The International Affective Picture System [Cen08].

• The Cohn-Kanade AU-Coded Face Expression Database [KCT00].

The HUMAINE project7 [Hum08] aims to build a repository for researchers to upload

affective databases as well as creating/providing an affective database of its own. While

the repository is still in its early stages, five of the six available databases are focused on

facial expressions and speech and voice. Only one database, created by the candidate, is

focused specifically on body posture and movement. However, as discussed in Sections 2.3

and 2.5, Pollick and colleagues [MPP06] have created an affective motion capture database

comprising affective actions of walking, knocking, lifting and throwing, which is available
7“EU-funded network of excellence HUMAINE is currently making a co-ordinated effort to come to a

shared understanding of the issues involved [in emotion-oriented computing], and to propose exemplary
research methods in the various areas.”
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for use. Coulson’s [Cou04] computer-generated whole body postures are also available for

research purposes [PP07].

While there are other freely available motion capture databases, they are not affect-based.

They include:

• Vanrie and Verfaillie [VV04]: Contains 22 stylised actions, such as chopping, driving, row-

ing, etc.

• Shipley and Brumberg [SB08]: Contains 14 stylised actions, such as running, walking,

karate kick, crawling, frisbee throw, etc. A markerless technique is used. A digital video

camera is used to record the actions and then x, y coordinates are hand-labelled for each

video frame.

• Hodgins [Hod08]: Contains general categories such as, human interaction, interaction with

the environment, locomotion, physical activities and sports, etc.

• MOCAPDATA.COM [Yam08]: Contains actions such as tennis, baseball, pain, soccer, etc.

It is clear from the above list that while motion capture databases exist that involve

the whole body, many of them comprise stylised actions of everyday activities, not affective

expressions (whether acted or non-acted). Based on the variety of recent research presented

throughout this chapter, it is apparent that providing databases of affective, whole body

postures and movements, acted and non-acted could reduce (if not eliminate) the time-

consuming task of developing a new corpus for each research endeavour, allowing researchers

to focus on the main goal of understanding and automating affect recognition.

2.7 Research Links

The purpose of this chapter has been to demonstrate the novelty of the research presented in

this thesis by providing both a background to the field of affect recognition and explaining the

areas that still lack sufficient research as well as issues involved in other research approaches.

The research presented in this thesis can be broken down into several research questions,
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which aim to address the issues that exist in the affective computing field. One research

question is:

• How should affective expressions be described?

It was shown in Section 2.1 that most affect expressions and recognition research focuses

on classification according to one of two schools of thought, discrete emotion categories

and affective dimensions. There is no consensus about which approach is ‘best’. It has been

asserted that emotion science could benefit from empirical research examining whether “both

approaches can be integrated in a sensible way to provide a comprehensive understanding of

affect” [Fox08]. While the integration of affective states and dimensions is becoming an

important issue, it remains important to examine what type of affective information can be

recognised from nonverbal communication channels. In this vein, it has been shown that

discrete emotion labels of experienced affect, facial expressions and arm movement typically

do in fact fall in a circumplex structure on a two dimensional affective space. However,

this has not yet been examined with body posture. This brings the discussion to the next

research question:

• What role does bodily information play in affect recognition, and is it a reliable nonverbal

communication modality from which affect in humans can be recognised and modelled?

In Section 2.2 it was shown that the majority of affective computing research has investi-

gated affective facial expressions. Only recently has attention turned toward affective bodily

expressions. Behavioural science research has shown that body posture is more important

for nonverbal communication than was previously thought. In fact, it has been found that

some affective states may be better recognised from the body than the face.

Section 2.3 explained that there have been a number of behavioural science studies aimed

at understanding body posture and movement cues that may contribute to the recognition

of specific affective states. However, there is still little systematic research in the direction

of posture, with no well-established models for body posture and movement. A low-level

posture description approach is taken in this thesis as it may allow for adaptability to almost

any context, over that of a high-level approach.
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• Are there universal aspects to affect expression and recognition or are they affected by

human factors?

An overview was given in Section 2.4 of the research investigating whether or not cultural

differences exist in how affect is expressed and perceived. It was pointed out that the

majority of existing research on this topic has focused on affective facial expressions, leaving

affective bodily expressions still a novel area to study. As it is accepted that people differ in

how they express and perceive affect due to a variety of factors such as culture, personality,

gender, etc., further research investigating these factors remains necessary in order to create

affect recognition systems.

• Is it feasible and advantageous to build automatic recognition systems for recognising af-

fective body posture?

In Section 2.5, it was observed that the majority of affective recognition systems have been

built on facial expressions and voice, with less emphasis placed on systems built to recognise

body posture. The systems that have focused on bodily expressions typically have focused on

body movement and dance. One goal of affective computing research is to create multimodal

recognition systems. However, in order to do so, the affective information available in

individual modalities should be examined first. For body posture for instance, it must first

be determined if and how well affect can be recognised by both humans and systems. This

thesis aims to provide this knowledge for body posture.

From the investigation of automatic affect recognition systems, it was concluded that

some significant problems exist in how these systems are created. These methodological

problems were investigated in Section 2.6, to address the two remaining research questions:

• How can the ground truth of affective expressions be established?

It was found that the majority of the automatic recognition systems discussed in Section

2.5 relied on ground truth labels provided by the individual who displayed the affective

expression. This approach may be problematic because, it is difficult to know for sure that

the person really expressed what s/he intended to express or that it was expressed through

the modality being investigated. The approach taken in this thesis is to use human observers
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to determine the ground truth of the affective postures instead of the expressers themselves.

The approach and its rationale are discussed in detail in Chapter 3.

• What type of affective data should be modelled? Acted or non-acted?

The argument is that acted affective expressions appear artificial and contrived. Although

investigating non-acted affective expressions is more desirable, obtaining them is more diffi-

cult, often due to ethical issues and environmental constraints. Acted affective expressions

are used as a typical starting point for much of the affect recognition research. The idea

is that if it is not possible to obtain ‘reasonable levels’ of recognition with acted affective

expressions, then it is unlikely that non-acted affective expressions will be any easier to

recognise as non-acted expressions tend to be more subtle.

The work presented in the remaining chapters of this thesis seeks to implement an ap-

proach that was devised to exploit these gaps in the current research. Details of the approach

are described in the following chapter.



Chapter 3

Research Hypotheses and

Methods

As discussed in Chapter 2, many qualitative psychological studies have been carried out to

understand what type of bodily cues may be attributed to specific affective states while only

recently has research started to focus on a quantifiable relationship between affect and its

expression through body posture [dM89][Cou04][SR06]. The main hypothesis of this thesis

is that affect, both discrete categories (e.g., happy, frustrated, etc.) and levels of affective

dimensions (e.g., arousal, valence, etc.), can be recognised from whole body posture, and

that computational models for affective body postures can be grounded into a low-level

description of posture. The hypothesis is split into two sub-hypotheses. One, that human

observers can recognise affect from posture at above chance levels. Two, that automatic

models can be built that achieve recognition levels comparable to benchmarks computed

based on human observers. Building such benchmarks is necessary when the ground truth

is not available.

82
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Rationale for the approach

An incremental approach is used to prove the hypotheses as purported to be necessary by

Wallbott [Wal98]. The first step is to examine the recognition of basic emotions from acted

postures. This situation was chosen as the first step based on the discussion presented in

Chapter 2 that it is a typical starting point for affect recognition research. The second step is

to examine the recognition of non-basic affective states from non-acted postures in a natural

situation. A video game scenario was chosen as the natural situation for two reasons. One,

research focused on affective information from video game players has recently become a

hot topic. Two, it is thought that as the video game players are not made aware of the

true purpose of the study, it will be possible to obtain true bodily expressions of affect.

In these first two steps, the postures to be investigated are manually extracted. The third

and final step in this research project is to examine automatic non-basic affective state

recognition offline in a run-time situation using sequences of non-acted static postures that

are not manually extracted. The aim is to demonstrate how a recognition system could be

integrated into existing software situations.

For the reasons discussed in Chapter 2, human observers are used for evaluating the

affective postures instead of the person who displayed the affective posture. Using a non-

acted situation means that there is no pre-existing ground truth, thus one needs to be

established. Once the ground truth has been established, the levels of observer agreement

(within and between observers) and later, the performance of the recognition models must

be computed. Chance level agreement has been chosen as the metric for validating the level

of agreement between observers as it is the typical metric currently used in the affective

computing field. A random repeated sub-sampling validation method is used to create

benchmarks based on the human observers. These benchmarks are used to evaluate the

performance of the automatic recognition models. Benchmarks that are created based on

the recognition rates of human observers have been set as the target in this research, as will

be discussed in Section 3.2.4. Described in more detail later in the chapter, the automatic

recognition models are also built using a random repeated sub-sampling method to test
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generalisability to new observers and 10-fold cross-validation to test generalisability to new

postures. As it is not possible to obtain an infinite number of samples, these validation

methods help to ensure that the automatic recognition model performances are an estimation

of the population and not simply an estimation of the population sample.

Figure 3.1: The general method used to investigate the research problem. (a) shows the
first step: corpora collection. (Permission to publish the photos has been granted.) (b)
outlines the procedure used to determine human recognition of affect. (c) demonstrates the
procedure used for building and testing automatic recognition models of affect. (d) is the
validation procedure of comparing recognition model performance to the human observer
benchmarks.

The remainder of the chapter explains the approach taken (shown in Figure 3.1) to

investigate the problems described and is organised as follows. Figure 3.1(a) and Section

3.1 explains the first step: collecting postural display data for assessing affect recognition by

human observers and for building and testing automatic recognition models. The procedure

for examining human recognition of affect is outlined in Section 3.2 and shown in Figure

3.1(b). The low-level posture description procedure (shown in the left side of Figure 3.1(c))

is explained in Section 3.3, and an analysis of how the posture description performs in

discriminating between affective states and affective dimensions is described in Section 3.4.

The method used to build automatic affective posture recognition models is represented
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in Figure 3.1(c) and explained in Section 3.5. Figure 3.1(d) represents the evaluation of

the automatic recognition models by comparing the benchmarks developed from the human

observers’ recognition rates with the recognition rates of the models and highlighting specific

misclassifications.

3.1 Posture Corpora

3.1.1 Motion capture data collection

As the overall hypothesis of this thesis is that affect can be recognised from whole body

posture, the first step is to collect postural display data. As shown in Figure 3.1(a), motion

capture systems are used for the collection of postural information instead of other tracking

methods such as vision-based techniques. The main influencing factor for this decision is

accuracy. Using motion capture systems, a precise numeric representation of the body in a

3D space can be more easily obtained. The use of numeric data allows for the humans to

be represented in degrees of human form [MPP06]. Another influencing factor is privacy.

Motion capture systems allow for complete anonymity. The use of anonymous data is an

advantage for many types of potential research and commercial applications, from healthcare

to video games. The individuals being recorded may wish to remain unidentifiable to other

patients or video game players.

A Vicon MX series digital optical motion capture system1 and a Gypsy 5 electro-

mechanical motion capture system2 are used. Two different motion capture systems are

used due to the requirements of each study. For example, the Vicon system was readily

available at the university in which the acted postures were collected. Furthermore, as the

study is acted, it is not crucial that the capturing take place in a strictly natural environment.

However, in the non-acted study naturalness of the environment is more of a requirement.

Both the Vicon and the Gypsy systems were available for the non-acted postures study,
1http://www.vicon.com/, retrieved November 2007
2http://www.animazoo.com/, retrieved November 2007
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however the fact that the Vicon system is installed inside a CAVETM-like system [CNSD93]

lessened the naturalness of the setting making the Gypsy system more desirable.

The participants motion captured with the Vicon system are dressed in a lycra suit

to which lightweight reflective markers are affixed to various joints and body segments as

depicted in Figure 3.2(a). Eight infrared cameras, mounted in a circular configuration

above the motion capture space, track and reconstruct the markers in a 3D space. The

Gypsy 5 motion capture system is a full-body exoskeleton (refer to Figure 3.2(b)) comprising

potentiometers located at the actor’s joints and joined together by lightweight plastic rods.

Two gyroscopes, one for the lower body and one for the upper body, calculate the rotational

direction of each section of the exoskeleton.

(a) (b)

Figure 3.2: (a) An example of the markers used for motion capture with the Vicon system.
(b) Animazoo’s Gypsy 5 exoskeleton motion capture suit. Permission to publish the photos
has been granted
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Each motion capture system has different advantages and disadvantages. The Vicon sys-

tem has been used by many industry leaders, such as Nintendo, Sony, BMW, Toyota, etc.

The markers of the Vicon system are small and lightweight, thus they are less bulky than

the exoskeleton configuration of the Gypsy system. However, an advantage of the electro-

mechanical attribute of the Gypsy system means that there is no marker occlusion as there

is with the Vicon. The Gypsy system is highly portable allowing it to be used in almost any

setting, indoors and outdoors, making it feasible for use in real applications, whereas the

Vicon system is more immobile, due to camera placement and set-up constraints. One dis-

advantage from which both motion capture systems suffer is the inability to record detailed

hand and finger positions. While the importance of detailed hand gestures is acknowledged,

adding this level of detail is outside the scope of the thesis.

For both systems, a manually labelled configuration model is created for each motion

capture participant. The configuration model is used to define the arrangement and size of

the individual’s body. Its purpose is to fit each of the motion captures to the size and form

of the individual’s body. Although a configuration model is not essential, the advantage of

using this model is that it allows for a more precise measurement of each body. However,

in some situations it may be more desirable to use a default configuration model. For

example, a video game scenario may not require the precise measurements of the individual

and a general bodily representation may be sufficient; whereas in a healthcare situation

such as physiotherapy, obtaining the individual’s precise bodily measurements could be

advantageous for tailoring the therapy.

Motion capture participants for the acted study are referred to as actors hereafter be-

cause, although they are not professional actors, they are explicitly asked to act out specific

emotions through whole body postures. Motion capture participants for the non-acted study

are referred to as players hereafter since a video game scenario is used.
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3.1.2 Stimulus identification

After collecting the motion capture information, for the studies presented in Chapters 4 and

5, static postures are manually extracted from the original motion capture data because

not all of the motion capture frames correspond to affective postures. A static posture

corresponds to a single frame of motion capture data, and is considered the apex, or most

expressive instant of the movement. The postures are used for investigating both human

recognition and automatic recognition of affective postures. The study in Chapter 6 does

not employ manual extraction of the postures but instead, sequences of static postures are

automatically extracted to build a testing set for investigating how well the recognition

system performs.

Once identified, the stimuli for all three studies are built in two ways. First, as a set of

posture images to be used in a posture judgment survey for human recognition of affective

posture as shown in Figure 3.1(b). The stimulus preparation procedure is described in

the following section. Second, as a vector of low-level postural information, i.e., numeric

descriptions of the configuration of the body, as shown in Figure 3.1(c), used to build, train

and test automatic affective posture recognition models.

3.2 Human Recognition of Affect from Posture

The purpose of this section is to explain the approach taken to evaluate the hypothesis

that human observers can recognise affect (i.e., discrete categories and levels of affective

dimensions) from whole body posture at above chance levels. Figure 3.1(b) provides an

overview of the approach and Figure 3.3 shows the approach in detail. Details of the process

are discussed in the remainder of the section.

3.2.1 Ground truth labelling

To test human performance in recognising affect from posture, the ground truth must be

built; labels need to be assigned to the affective postures. The view taken in this research
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Figure 3.3: Expands the human recognition of affect box from Figure 3.1(b). Observers are
recruited to judge the affective state and dimension levels of a set of postures. The set of
observers are divided into subsets 10 times (i.e., trials) and a ground truth is assigned to
each posture in each subset. The agreement between subsets is computed and a benchmark
is calculated as the average agreement between the subsets across the 10 trials

project is that there is no inherent ground truth affective state label or dimension level that

can be attached to the postures. Labels that could be assigned by the actors and players are

not considered for the reasons described in Section 2.6 of Chapter 2. In the acted postures

study, the actors’ labels and dimension ratings are not used because the actors may not

portray what they intend to portray as they are not professional actors. In the non-acted

postures study, the players are not used to label their own postures because “self-reported

feelings at the end of a task are notoriously unreliable” [KBP07], and it is not feasible to stop

the players during the gaming session to ask them their current affective state. Furthermore,

because the complete affective state is expressed through the combination of a variety of

modalities in the non-acted scenario in particular, it is difficult for the players to be aware

through which modality affect was expressed [RF99], or if their bodies were expressing their

true feelings. Thus, the approach used in this research is to build ground truth labels from

outside observers’ judgments of the postures using posture judgment surveys. The survey

participants are referred to as observers hereafter.
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3.2.2 Stimulus preparation

The posture judgment surveys consist of static posture images of a humanoid avatar. The

avatars are created from the extracted postures described in Section 3.1, i.e., the original

motion capture data. The procedure used to extract postures from the Vicon data is de-

scribed in Chapter 4 and the Gypsy data extraction procedure is presented in Chapters 5

and 6. The postures are presented in the frontal view. Avatar examples are shown in Figure

3.4. Avatars are used instead of human photos in order to create a faceless, genderless, non-

culturally specific ‘humanoid’ in an attempt to eliminate bias. Using avatars, observers are

not affected by facial expressions, as the focus is on how posture alone conveys the desired

impression. Use of the face could confound the observers’ evaluations because it would not

be possible to discern which channel of information is used to judge the expression.

(a)

(b)

Figure 3.4: Examples of the affectively expressive avatars constructed from motion capture
data. The avatars in (a) were created with the data from the Vicon motion capture system.
The avatars in (b) were created with the data from the Gypsy motion capture system
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3.2.3 Survey procedure

The posture judgment surveys are conducted online. The set of postures are presented in

a randomised order and observers are asked to associate either an affective state label or

affective dimension levels to each. For the affective category surveys, a forced-choice design

is chosen over an open-ended design which requires the observers to freely choose labels.

Russell [Rus94] reports the issue of using open-ended designs by citing a 1953 study by Fri-

jda [Fri53] that used an open-ended format. Instead of emotion labels, the majority of the

responses given were situation descriptions, which makes it difficult to assess the agreement

between observers. A seven point Likert scale is used for the affective dimensions surveys.

The observers are asked to judge each posture according to four affective dimension scales:

valence (displeasure/pleasure), arousal (calm/excited), potency (control), and avoidance

(avoid/attend to). Valence, arousal, and potency (also referred to as dominance) have been

chosen based on psychological research throughout the last century which asserts that these

three dimensions cover the majority of affect variability [Wun07][OST57][Dav64][MR74].

Avoidance is chosen as a fourth dimension because it could provide important information

in a variety of contexts. The output of the posture judgment surveys are sets of labelled

postures. Specific details about each survey will be presented in Chapters 4, 5 and 6.

3.2.4 Procedure for measuring human agreement performance

This section explains the process used to measure the performance of human observer agree-

ment on recognising affect from whole body posture. Four main procedures are carried out:

i) to determine a ground truth for each posture; ii) to assess agreement within and between

observers; iii) to assess the reliability within and between the observers’ agreement levels; iiii)

to build benchmarks to be used for evaluating automatic recognition model performances.

For each survey, let P = {p1, ..., pr} be the set of postures used in the survey; let

L = {l1, ..., ln} be the set of labels available in a forced choice survey; let D = {d1, ..., d4}
be the set of dimensions evaluated in an affective dimensions survey; let O = {o1, ..., om} be

the set of observers that participate in the survey.
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In the forced choice surveys (the affective state labels case), observers assign a label to

each posture. For each observer ok, posture pi and label lj , the evaluation function is defined

as evalcat(ok, pi, lj) such that evalcat(ok, pi, lj) = 1 if the observer ok has assigned the label

lj to pi; otherwise evalcat(ok, pi, lj) = 0.

In the affective dimensions surveys, observers evaluate each posture pi over each dimen-

sion dg in set D on a seven point rating scale. For each observer ok, posture pi and dimension

dg the evaluation function is hence defined as evaldim(ok, pi, dg) = c where c is a value from

1 to 7 (the rating scale).

• Posture ground truth

To measure the performance of affective posture recognition by human observers, for the

affective categories cases, for each posture pi and a set of observers O, the ground truth

gtl(pi, O) is defined as the label lj for which freq(pi, lj) > freq(pi, lt) for each t = {1, ..., n}
and t 6= j where

freq(pi, lj) =
1
m

m∑

k=1

evalcat(ok, pi, lj) (3.1)

where m is the number of observers in O. freq(pi, lj) ranges between [0,1] and the value for

evalcat(ok, pi, lj) can be either 0 or 1. If freq(pi, lj) = freq(pi, lt), then the ground truth

label is randomly selected between the two labels lj and lt.

For the affective dimensions cases, for each pi, the ground truth rating, gtm(pi, O) =

median{evaldim(ok, pi, dg) : k = 1, ..., m}.

• Observer agreement

Within observers agreement: The within observers agreement on the set of postures P is

computed for a set of observers O. For the affective categories cases, within observers

agreement is computed across the set of labels L and for each individual label lj . The

within observers agreement W.AgrLabel(lj , O) for a label lj is defined as
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W.AgrLabel(lj , O) =
1
r

r∑

i=1

freq(pi, lj , O) (3.2)

where r is the number of postures and freq(pi, lj , O) is the frequency of use for the label

lj for a posture pi as defined in Equation (3.1). W.AgrLabel(lj , O) ranges between [0,1]. A

within observers agreement W.AgrLabel(L,O) across the set of labels L is defined as follows

W.AgrLabel(L,O) = average(W.AgrLabel(l1, O), ..., W.AgrLabel(ln, O)) (3.3)

where W.AgrLabel(L,O) ranges between [0,1].

Between observers agreement: Given two sets of observers, O1 and O2 and a posture

pi, the agreement between the two sets of observers for pi is 1 if gtl(pi, O1) = gtl(pi, O2),

otherwise 0. The between observers agreement B.AgrLabel(O1, O2) is defined as the average

of the agreement between the two sets of observers O1 and O2 across the set of postures P .

For the set of affective dimensions D, between observers agreement B.Agr(dg, O1, O2) is

not considered binomial because a rating scale is used and the distance between two ratings

is important. Therefore, between observers agreement in the dimensions cases is defined as

B.Agr(dg, Ok) = 1−
(∑r

i=1 |gtm(pi, O1)− gtm(pi, O2)|
r ∗ (7− 1)

)
(3.4)

where r is the number of postures and 7 − 1 = the degrees of freedom in the rating scale

and B.Agr(dg, Ok) ranges between [0,1].

• Observer agreement reliability

To assess the reliability of the observers’ judgments, Cohen’s kappa [Coh60] and Fleiss’

kappa [Fle71] are computed for the categorical data and Cronbach’s α [Cro51] is computed

for the dimensional data. Kappa coefficients were chosen because they are well-known, well-

used statistical methods for assessing inter-rater reliability. “Kappa is intended to give the

reader a quantitative measure of the magnitude of agreement between observers” [VG05].
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Cohen’s kappa is computed between two subsets of observers. Fleiss’ kappa, a variation of

Cohen’s kappa, takes into account multiple raters. Thus, it is computed within an entire

set of observers O. The equations for both Fleiss’ and Cohen’s kappa can be written in the

same way. Kappa (K)

K =
(A−Ae)
(1−Ae)

(3.5)

where A is the agreement and Ae is the agreement expected by chance. The kappa ranges

between [-1,1] with a kappa of 1 showing perfect agreement, a kappa of 0 showing the agree-

ment that would be expected by chance alone and a kappa of -1 showing total contradiction.

Landis and Koch [LK77] provided a breakdown for interpreting the ratings, depicted in

Table 3.1.

Table 3.1: Interpreting the kappa ratings.

Kappa Interpretation
< 0 No agreement
0.0 - 0.20 Slight agreement
0.21 - 0.40 Fair agreement
0.41 - 0.60 Moderate agreement
0.61 - 0.80 Substantial agreement
0.81 - 1.00 Almost perfect agreement

For the dimensional data, Cronbach’s α is cited as the most accepted statistical method

for computing the reliability of scale data [Fie05]. Cronbach’s α is defined as

α =
H2Cov

Σq2
item + ΣCovitem

(3.6)

where H is the number of items squared and multiplied by the average covariance between

the items and then divided by the sum of all the item variances and item covariances [Fie05].

Cronbach’s α ranges between [0,1]. The higher the α level, the more consistent the observers

ratings. Cronbach’s α is computed for both the within and between observers cases for the

dimensional data.
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Figure 3.5: The method for creating the benchmarks of human recognition. The set of
observers O, is randomly divided into 3 disjoint subsets, Os,1, Os,2 and Os,3, repeated for 10
trials, i.e., s = 1, ..., 10. For each Osk, ground truth labels gtl(pi, Osk) or ground truth ratings
gtm(pi, Osk) are assigned to each posture pi in the set of postures P . Os,1 is compared with
Os,2 to determine a benchmark for human recognition of affect from whole body posture

• Creating the benchmarks

To create benchmarks, the questions: what does accuracy mean? and what is acceptable

or sufficiently ‘high’ performance? need to be answered. While not the perfect method,

affective computing research typically reports that a system performs well if the accuracy

rate is above chance level. The issue is that, depending on the application, chance level

recognition may not be sufficient. Instead, what is needed is a way to measure the recognition

rate acceptable for a particular application so that the user’s experience with the affective

technology improves rather than degrades. For example, in an affective technology aimed to

act as a counselor, basing automatic recognition performance on recognition levels obtained

by untrained or non-empathic human observers would not be sufficient. However, in a video

game scenario, achieving a human observer level of performance may be a sufficient target

recognition rate as it has been shown that people prefer to play games together [LLCBB08].

A random repeated sub-sampling method is used for creating the benchmarks of human
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recognition performance (depicted in Figure 3.5). This method is used in an effort to obtain

performance rates that may reflect a real population. Repeated sub-sampling helps to ensure

replicability, i.e., that the results are not limited to a particular partitioning instance [Fin72].

Resampling methods are used in situations where it is not possible to obtain an infinite

number of examples (e.g., observer judgments) [VL89].

For the affective categories and the affective dimensions separately, shown in Figure 3.5,

a set of observers O is randomly divided into three disjoint subsets, Os,1, Os,2 and Os,3,

repeated for 10 trials, s = 1, ..., 10. For each Osk, the respective ground truth gtl(pi, Osk) or

gtm(pi, Osk) (depending on the case, i.e., labels in the former and dimensions in the latter)

is assigned to each posture pi. For each trial s, a between observers agreement is computed

between observer subsets Os,1 and Os,2 as previously stated in the ‘Observer agreement’

bullet point. A benchmark for the affect recognition model evaluation is computed as the

average across the 10 trials. The benchmarks are used later to evaluate the recognition

performance of the automatic recognition models built with the reserved third subset of

observers Os,3, which will be discussed in Section 3.5.

3.3 Low-Level Posture Description

Each posture corresponds to a single frame of motion capture data as previously explained

in Section 3.2.2. For each selected frame, i.e., a posture pi, a vector of low-level posture

features, Fi = {fi1, ..., fiu} (shown in the ‘low-level posture description’ box of Figure 3.1(c)

and Figure 3.6 explained in Section 3.5) describing the configuration of the posture is built.

These low-level features describe the posture configuration in terms of distances between

joints and angles between body segments. The use of these low-level features allows for

a general description of the postures displayed. A major strength of the low-level posture

description approach is that it is general, meaning that it is independent of affective state

and context, provided that the postures offer the information necessary to recognise the

affective state. Context information could be added to bias the recognition without having
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to change the way the posture description is computed, but this is outside the scope of the

thesis. The posture feature computation details are provided in Chapters 4 and 5 separately.

3.4 Low-Level Posture Description Analysis

To determine the discriminative power of the low-level posture description, a feature analysis

is carried out using an analysis of variance (ANOVA) approach. Specifically, ANOVA is used

to evaluate how informative and useful each of the low-level features in the description is for

distinguishing between postures associated to different affective states and between postures

associated to different dimension ratings. The ANOVAs are computed using SPSS 16 [Fie05].

3.5 Automatic Recognition of Affect from Posture

This section describes the analysis of the low-level posture description and the approach

taken to examine whether automatic recognition models of affective posture can be built

that are able to achieve recognition levels similar to the benchmarks set by the human

observers. Figure 3.1(c) provides an overview of the approach and Figure 3.6 illustrates the

details of the approach. The complete process is discussed in the remainder of the section.

3.5.1 Model Creation and Evaluation

After the low-level posture description has been computed and the features have been anal-

ysed, automatic recognition models are built that map the low-level posture descriptions into

labels describing the affective state or affective dimension levels conveyed by each posture.

The goal is not to evaluate or modify the learning algorithm itself or to define new

algorithms; this is outside the scope of the thesis. Instead the goal is to test automatic

recognition performance and evaluate the low-level posture description. A multi-layer per-

ceptron (MLP) with a back-propagation algorithm [Hay99] is implemented using Weka 3.6

[HFH+09]. An MLP was chosen because it is often used in affective computing and thus may



98

Figure 3.6: Expands the automatic recognition of affect box in Figure 3.1(c). The vector
of low-level posture features Fi is computed for each posture pi. Os,3 is used to train the
automatic recognition models which are then tested against Os,1. This procedure is repeated
for each of the 10 trials. Os,1 and Os,3 are defined in Figure 3.5

be considered a benchmark-setting method. It was also chosen for its ability to effectively

handle discrete categorical data as well as continuous data. An MLP learns by iteratively

processing a set of training samples and comparing the network’s prediction for each sample

with the known class label. Using the MLP, the automatic recognition models are tested for

their ability to generalise in two ways: i) to new observers and ii) to new postures. Each

generalisation procedure is outlined in the following paragraphs.

Generalising to new observers

Due to the lack of a definitive affective ground truth, one goal is to test how well the

recognition models can generalise to new observers. This testing procedure is depicted

in Figure 3.7 and uses observer subsets Os,1 and Os,3 previously defined in Section 3.2.4.

Keep in mind that the set of postures P is the same in all three subsets. The automatic
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Figure 3.7: The method for testing and evaluating automatic recognition models’ ability to
generalise to new observers. Os,1 and the previously unused Os,3, defined in Section 3.2.4
and shown in Figure 3.5, are used. Os,3 is used to train recognition models which are then
tested against Os,1. This procedure is repeated for each of the 10 trials

recognition models are built and trained on Os,3 and then tested using Os,1. The testing

procedure is repeated for each of the 10 trials. To evaluate the automatic recognition models’

performance, the average of the automatic recognition rates computed across the 10 trials

is compared to the benchmark computed in Section 3.2.

Generalising to new postures

Another goal of testing is to assess how well the automatic recognition models can generalise

to new postures as the set of postures would not remain static, but instead would continue

to grow were the models integrated into existing software applications. Testing posture

generalisation is achieved using 10 fold cross-validation. The procedure is depicted in Figure

3.8. Each posture pi is associated with a ground truth label gtl(pi, O) or rating gtm(pi, O).
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Figure 3.8: The set-up for 10 fold cross-validation. The postures are assigned ground truth
labels and automatically divided into 10 subsets. A model is built and trained on 9 of the
subsets and then tested against the 10th subset. The process is automatically repeated until
each subset has been tested against a trained model

Next, the postures are randomly divided into 10 equal subsets. Automatic recognition

models are built and trained using nine of the subsets and then the tenth subset is used for

testing the models. The procedure is automatically repeated until all of the subsets have

been used for testing. The recognition performance is the average across the 10 subsets.



Chapter 4

Case Study 1: Modelling Acted

Basic Emotions

The goals of the acted postures study are to assess whether acted postural expressions of

basic emotions can be recognised by human observers and automatic recognition models.

The recognition of acted displays of emotion was chosen as the first case study because it

is the typical starting point for a lot of research aimed at recognising affect from nonverbal

communication modalities [DCCS+07]. Perceiving basic emotions is accepted as easier than

perceiving more subtle, non-stereotypical, complex affective states [eKR04].

Section 4.1 reports on the posture data collection. Sections 4.2, 4.4 and 4.5 address the

recognition (at human and automatic levels) of discrete emotion categories from posture.

Section 4.3 explains the low-level posture features used for describing posture in this study.

The second part of the chapter reports on the recognition of levels of affective dimensions

from posture in the same format as the emotion category recognition. The chapter ends

with a summary in Section 4.9.

101



102

4.1 Posture Corpora

4.1.1 Motion capture data collection

The first step in assessing if basic emotions can be recognised from acted postures was to

collect a set of postural data. As described in Section 3.1 of Chapter 3, the Vicon motion

capture system [Vic07] was used in this study. Three-dimensional motions were recorded

while actors enacted four emotions, angry, fear, happy and sad through bodily expressions.

These emotions were chosen on the basis that they are included in the set of basic emotions

defined by Ekman and Friesen [EF75]. After explaining the general purpose and goal of

the study, the actors were dressed in the lycra suit to which the markers were affixed. The

motion capture sessions were carried out at a Japanese university that does not require

written consent. Next, a configuration model was created using a single frame (i.e., a static

instance) of motion capture data.

4.1.2 Actors

Thirteen actors: 10 Japanese (three females and seven males between the ages of 18 and 22),

two Sri Lankans (one female and one male both 28 years of age) and one American female

research assistant, age 55, were recruited for participation. The Japanese and Sri Lankan

actors were computer science students. The actors were asked to perform their own idea of

the four different emotions through bodily expression. Each emotion was expressed by each

actor four times (4 x 13 x 4 = 208). No constraints were placed on the actors in how they

performed the affective postures. The affective expressions were represented by contiguous

frames describing the position of the 32 markers in the 3D space.

4.1.3 Stimulus identification

Twenty-six postures were discarded due to data post-processing problems, leaving a set of

182 affective postures P for experimental use. Once the affective postures were collected, it
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was necessary to manually locate the apex instant of the postures to be used as the study

stimuli. The apex postures corresponded to the actors’ evaluation of the most emotionally

expressive instant of each motion performed.

4.2 Human Recognition of Basic Emotion Categories

from Posture

The goal of this section is to examine the extent to which human observers can recognise

basic emotion categories from posture. As of yet there are no recognised benchmarks for

evaluating recognition rates. Thus, chance level is typically considered the target rate for

human recognition of affect. Using the repeated sub-sampling method outlined in Chap-

ter 3, benchmarks computed on the observers’ agreements will be used for evaluating the

performance of automatic recognition models discussed later in the chapter.

4.2.1 Survey Procedure

To create the stimuli for the human recognition of affect, the original motion capture data

was imported into 3D Studio Max [Aut08] and mapped to the default 3D faceless humanoid

avatar. Static posture images were rendered for each apex posture. An online survey was

conducted using these avatar stimuli. The aim was to obtain judgments on the affective

postures in order to assign a ground truth emotion category to each posture as defined in

Chapter 3, Section 3.2.4.

A forced-choice experimental design was implemented. For each page (one posture per

page), observers were asked to choose an emotion label to represent the posture displayed.

The set of labels L = {angry, fear, happiness, sadness}. Two nuances were considered for

each label in L to make an eight word list, i.e., angry, upset (angry); fearful, surprised (fear);

happy, joy (happy); and sad, depressed (sad). The purpose was to offer the observers a larger

variety of emotion options, but remain focused on the four discrete categories. The set of

posture stimuli used was reduced from the original 182 static posture images. Some of the



104

Figure 4.1: An example of the emotion category evaluation survey.

postures were similar to each other, therefore to reduce the amount of time required by the

observers, many of the very similar looking postures were excluded, yielding 108 postures,

i.e., |P | = 108. An example of the emotion category posture judgment survey can be seen

in Figure 4.1.

Observers

The posture judgment survey was completed by a set of 87 observers. Thirty-three Japanese

OJA ranging in age from 18 to 25. The majority of these observers were computer science

university students. Twenty-seven Sri Lankans OSL ranging in age from 23 to 30 and 27

Caucasian Americans OUS ranging in age from 28 to 60. While the educational level of

the Sri Lankan and American observers was similar, the educational background and career

status were more varied. As the Sri Lankan participants were educated in English, the

survey was presented in English and Japanese only.
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Table 4.1: An overview of the within observers agreement results for all observers combined
O and each group OJA, OSL, OUS separately. The W.AgrLabel(L, O) across L is listed in
the second column and the W.AgrLabel(lj , O) for each lj is listed in the last four columns.
The number of pi per lj per O, OJA, OSL, OUS is noted in parentheses

Observers W.AgrLabel(L, O) ∗ 100 W.AgrLabel(lj , O) ∗ 100

Angry Fear Happy Sad
3 groups combined 61% 57% (33) 66% (26) 57% (29) 72% (24)
Japanese 67% 63% (34) 71% (33) 61% (23) 72% (18)
Sri Lankan 62% 54% (35) 69% (23) 60% (26) 66% (24)
American 64% 61% (31) 64% (28) 58% (26) 73% (23)

4.2.2 Overview of the Survey Data

Before computing the benchmarks for this study, the aim was to get a general overview of

the survey data; the measures of within observers agreement W.AgrLabelLabel(lj , O) for

each label lj : j = 1, ..., 4 (as defined in Equation (3.2)) and within observers agreement

W.AgrLabel(L,O) across the set of labels L (as defined in Equation (3.3)) were computed.

Observer-observer agreement

A ground truth label gtl(pi, O) from L was assigned to each posture pi in P for the observers

from the three sets of observers combined O and for each group individually OJA, OSL, OUS .

The results can be seen in Table 4.1. The Table lists the results for the three groups combined

O in the first row and the results within each group of observers OJA, OSL, OUS separately

in the last three rows. The columns list the W.AgrLabel(L,O) across the set of labels L

first and the W.AgrLabel(lj , O) for each emotion label lj in the remaining four columns.

Chance agreement was 25% since four emotion categories were considered. For the entire

set of observers O, W.AgrLabel(L,O) across the the set of labels L and W.AgrLabel(lj , O)

for each label lj were both well above chance level. The same results were obtained for each

set of observers OJA, OSL, OUS separately as hypothesised.

The overall results for the three groups combined O are reported in Figure 4.2. Each

posture pi is represented by a pie chart showing the frequency of use freq(pi, lj) (as defined
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Figure 4.2: Each pie chart indicates the frequency of use freq(pi, lj) for each emotion label
lj : j = 1, ..., 4 for each posture pi for the set of postures P for the three sets of observers
combined O. The column numbers and the row letters allow specific postures to be easily
identified and located when referenced in the text or in other Figures
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in Equation (3.1)) of each label lj : j = 1, ..., 4. The pie charts are grouped according to their

most frequent label, i.e., the ground truth label gtl(pi, O) associated to the corresponding

posture pi.

The individual results for each of the three groups OJA, OSL, OUS are reported in Figures

4.4, 4.5 and 4.6. In this case, the pie charts are grouped according to the order presented in

Figure 4.2 rather than the ground truth assigned by an individual group of observers. This

is simply to facilitate the comparison between the overall results and the individual group

results. In order to easily locate individual postures, the rows are labelled with letters and

the columns are labelled with numbers. For example, the posture located in the third row

of the third column corresponds to position C3. Ordering the postures in this way allows

for easy identification of specific posture differences between the three groups separately

and combined. These reference positions will be used throughout the rest of the emotion

categories sections of this Chapter for the discussions on individual postures.

• All observers combined: As listed in the first row of Table 4.1, the emotion cat-

egories lj with the lowest within observers agreement W.AgrLabel(lj , O) were angry and

happy. As seen in Figure 4.2(a), the angry labelled postures, there was little consensus

as to the second most frequent label. For the happy labelled postures (Figure 4.2(a)), the

confusion was with more activated types of emotions such as anger or fear. The second

most frequent label was rarely confused with sad with the exception of posture I3. In fact,

this posture (Figure 4.3(a)) somewhat resembles other sad labelled postures with the head

just starting to bend forward and the arms stretched alongside the body. The difference is

that the wrists are bent, extending the hands laterally which resembles some of the lower

frequency (i.e., ambiguous) happy postures such as I4 and M2 (Figure 4.3(b) and (c), re-

spectively).

The ambiguities with the fear labelled postures also occurred mainly with the more

activated types of emotions, angry and happy, with the exception of sad for a few postures,

such as E10 and B10. In the case of posture E10 (Figure 4.3(d)), it does appear to have

angry and sad qualities according to the postures ground truth labelled as such, e.g., the
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(a) I3: Happy (b) I4: Happy (c) M2: Happy

(d) E10: Fear (e) J10: Sad (f) K6: Sad

Figure 4.3: Posture examples for the three groups of observers combined O. (a)-(c) show
low frequency happy postures; (d) shows a low frequency fear posture (e) and (f) show low
frequency sad postures. The letter and number pair under each posture image refers to the
location of that posture in the pie charts in Figures 4.2, 4.4, 4.5 and 4.6

bent elbows of angry and the head bent forward.

For the sad labelled postures, the ambiguities occurred for angry with the exception of

J10 and K6. These postures, with the head turned and the body tilted slightly to the side,

resembles fear labelled postures. In the case of posture K6 (Figure 4.3(f)), while the body

is straight and the head is bent forward, the arms are somewhat extended laterally, which

does not resemble the other sad labelled postures.



109

Figure 4.4: Each pie chart indicates the frequency of use freq(pi, lj) for each emotion label
lj : j = 1, ..., 4 for each posture pi for the set of postures P for the Japanese observers OJA.
The column numbers and the row letters allow specific postures to be easily identified and
located when referenced in the text or in other Figures
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Figure 4.5: Each pie chart indicates the frequency of use freq(pi, lj) for each emotion label
lj : j = 1, ..., 4 for each posture pi for the set of postures P for the Sri Lankan observers
OSL. The column numbers and the row letters allow specific postures to be easily identified
and located when referenced in the text or in other Figures
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Figure 4.6: Each pie chart indicates the frequency of use freq(pi, lj) for each emotion label
lj : j = 1, ..., 4 for each posture pi for the set of postures P for the American observers OUS .
The column numbers and the row letters allow specific postures to be easily identified and
located when referenced in the text or in other Figures
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(a) A2 (b) A3

Figure 4.7: The postures discussed in comparing OJA, OSL, OUS . (a) Angry for OSL but
mainly happy for OJA and OUS ; (b) obtained high frequencies of both angry and happy
according to OSL but high frequencies of mainly angry only according to OJA and OUS . A2
and A3 refer to the location of the postures in Figures 4.3, 4.4, 4.5 and 4.6.

• Individual observer groups: Looking at the pie charts for the individual groups of

observers OJA, OSL, OUS , Figures 4.4, 4.5 and 4.6, it can be seen that posture A2 (Figure

4.7(a)) obtained a high frequency of use for happy for the Japanese OJA (Figure 4.4) and

the Americans OUS (Figure 4.6), but the posture was mainly angry for the Sri Lankans

OSL (Figure 4.5). In fact, it was one of the four postures with the highest frequency

for angry for the Sri Lankans, which may indicate a difference in how anger is perceived

from bodily expressions by the Sri Lankans as opposed to the Japanese or the Americans.

However, posture A3 (Figure 4.7(b)), which has some configurational similarities to posture

A2, obtained a much higher frequency of use for angry for the Japanese (86%). This posture

looks more like the other angry postures for all three observer groups combined O.

4.2.3 Creating Benchmarks

To create benchmarks for the human recognition of basic emotions from posture, the first

step was to assess observer reliability. Fleiss’ kappa was computed for each group of observers

OJA, OSL, OUS separately as well as for all observers combined O. For the individual groups,

Fleiss’ kappa was highest for the Japanese OJA (0.459 = moderate agreement), with the

Americans OUS second (0.415 = moderate agreement) and the Sri Lankans OSL last (0.356

= fair). Fleiss’ kappa for all observers combined O was 0.397 (fair agreement).

The second step was to create the benchmarks that will be used to evaluate the perfor-
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mance rates of the automatic recognition models. Using the method described in Chapter

3, Section 3.2.4, the analysis was carried out in two ways: i) between the three groups of

observers, with each group considered to be a subset OJA, OSL, OUS ; and ii) with the three

groups combined O and using the random repeated sub-sampling method to partition the

observers into three disjoint subsets Os,1, Os,2 and Os,3.

Observer agreement reliability results: Between the three groups

Inter-observer agreement reliability was measured to test the consistency between the three

groups of observers. First, a ground truth label gtl(pi, Osk) was assigned to each posture

pi for each group of observers OJA, OSL, OUS . Next, the between observers agreement

B.AgrLabel(Os,1, Os,2), i.e., the average agreement between two subsets of observers (as

explained in Chapter 3, Section 3.2.4), Cohen’s kappa [Coh60], the 95% confidence inter-

val and the strength of agreement [LK77] between all pairs of the three observer groups

were computed. The results, listed in Table 4.2, show substantial levels of inter-observer

agreement reliability for three group pairs, indicating excellent agreement beyond chance

[BCMS99].

Table 4.2: The B.AgrLabel(Os,1, Os,2) and the inter-observer agreement reliability between
each pair of observer groups. The resulting benchmark (used to evaluate automatic recog-
nition model performance) is listed in the last column.

Inter-observer agreement reliability between the 3 groups

Observer ID B.AgrLabel(Os,1, Os,2) ∗ 100 Kappa 95% CI Strength Benchmark
JA * SL 72.22% 0.627 0.513, 0.741 Substantial

76.54%JA * US 80.56% 0.739 0.639, 0.839 Substantial
SL * US 76.85% 0.690 0.582, 0.798 Substantial

Observer agreement reliability results: The three groups combined

Inter-observer agreement reliability was also measured to test the consistency between ob-

servers of the three groups of combined O. Ten trials (i.e., s = 1, ..., 10) were created

using the random repeated sub-sampling procedure described in Chapter 3. Each trial com-
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Table 4.3: The B.Agr(L,Os,1, Os,2) and the inter-observer agreement reliability (i.e., Co-
hen’s kappa) between Os,1 and Os,2 for the 10 trials. The resulting benchmark to be used in
evaluating the performance of the automatic recognition models is listed in the last column.

Inter-observer agreement reliability between the 3 groups

Trial B.AgrLabel(Os,1, Os,2) ∗ 100 Kappa 95% CI Strength Benchmark
1 85.29% 0.804 0.712, 0.896 Substantial

84.80%

2 83.33% 0.777 0.681, 0.873 Substantial
3 86.27% 0.816 0.726, 0.906 Almost perfect
4 81.37% 0.752 0.652, 0.852 Substantial
5 89.22% 0.856 0.776, 0.936 Almost perfect
6 84.31% 0.789 0.693, 0.885 Substantial
7 83.33% 0.777 0.681, 0.873 Substantial
8 85.29% 0.803 0.711, 0.895 Substantial
9 81.37% 0.752 0.652, 0.852 Substantial
10 88.24% 0.843 0.759, 0.927 Almost perfect

prised three disjoint subsets Os,1, Os,2 and Os,3 of 29 observers. For each trial, the between

observers agreement B.AgrLabel(Os,1, Os,2) and Cohen’s kappa coefficient were computed

between Os,1 and Os,2. The results are listed in Table 4.3. Each row constitutes a trial and

lists the B.Agr(L,Os,1, Os,2), Cohen’s kappa, the 95% confidence interval and the strength

of agreement [LK77]. The strength of agreement was interpreted as substantial and almost

perfect for all 10 trials, which can be taken to mean excellent agreement beyond chance

[BCMS99].

Benchmarks

To set the benchmarks of human recognition of basic emotion from body posture, the same

three-way data splits were maintained: i) between the three groups OJA, OSL, OUS and ii)

for all the observers combined O. The benchmark between the three groups is listed in

the last column of Table 4.2. It is the average across the between observers agreements

B.Agr(L,Os,1, Os,2) for all pairs of observer groups, 76.54% (SD = 2.35%).

The benchmark for all the observers combined O is listed in the last column of Table

4.3. It is the average of the between observers agreements B.Agr(L,Os,1, Os,2) across the

10 trials, 84.80% (SD = 2.63%). Comparing the between observers agreements achieved in

this research with those found in other research, comparable or higher between observers
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agreement levels were obtained here. For instance, 52% agreement was obtained by Camurri

and colleagues [CLV03] for acted dance motions of three basic emotions (anger, joy and fear).

68% agreement was obtained between observers on acted affective walking movements on

three basic emotions (anger, joy and sad) in a study by Crane and Gross [CG07].

4.2.4 Discussion

The results obtained for the within observers agreement for the three groups combined O and

OJA, OSL, OUS separately showed that the emotion categories with the highest agreement

were fear and sad. The result for sad is not surprising as sad is often very well recognised

by human observers [Cou04][KKVB+05]. This may be especially true when considering the

limited list of labels from which the observers had to choose.

The agreement for fear was interestingly high considering other research in which the

observer agreement for fear was less than other basic emotions, such as anger and happiness

[Cou04]. Righart et al’s [VdSRdG07] results also indicated a difficulty in recognising fear

from static posture. In fact, the authors claimed that it was “the most difficult emotion to

recognise in a forced-choice paradigm.” However, Coulson [Cou04] reported that the neural

systems involved in detecting motion become activated when viewing, which may affect the

viewing of static images as well as motion. This is referred to as ‘implied bodily action’

and is a survival mechanism processed by the brain - not a conscious process [vHMGdG07].

Atkinson et al [ADGY07] assert that static form information of posture, i.e., configurational

cues, plays a bigger part in recognising fear than kinematics.

4.3 Low-Level Posture Description

The role of this section is to explain how the low-level posture description is determined.

Towards building automatic recognition models of affective posture, the numerical descrip-

tion of the postures must be obtained. The upper body is the main focus of the posture

description as determined by preliminary results in this research project indicating that the
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upper body is used most in standing postural displays of emotion and affect [KFTBB03].

For each posture pi, the posture description comprises a set of 24 low-level configuration

features Fi = {fi1, ..., fi24} [BBK03]. The features and the parameters to compute them

are listed in Table 4.4 and illustrated in Figure 4.8. The computed features are angles be-

tween segments and distances between joints.1 Before the features are computed, the x, y,

z positions of each joint of the posture (collected by motion capture) are rotated so that

the axis between the hips is aligned with the x axis of the 3D space and perpendicular to

the y axis, with the front of the body facing in a positive direction. Each computed feature

fiw : w = 1, ..., 24 is normalised to [0,1] to take into account an actor’s body size.

The ‘distance’ features (V6 to V23 in Table 4.4) describe a pseudo distance between two

joints on each axis separately, i.e., vertically, laterally and frontally. For example, V6, V8

and V10 describe the normalised position of the hand with respect to the shoulder along the

z axis (vertical extension), the x axis (lateral extension) and the y axis (frontal extension),

respectively. Refer to Figure 4.8. Hence, for each individual axis x, y, z, a distance feature

fiw between a joint jp1 and a joint jp2 is computed as follows

fiw = 1−
(

biw − viw

max rangeiw

)
(4.1)

where biw is the maximum value that a joint jp1 could reach on that particular axis with

respect to the current position of jp2, viw is the current position of the body joint jp1

on that axis, normalised with respect to max rangeiw, i.e., the maximum range that the

joint jp1 can cover according to each actor’s body and with respect to the joint jp2. For

example, for the vertical extension of the hand (jp1) with respect to the shoulder (jp2) (V6),

biw = length of the fore arm + length of the upper arm + z position of the shoulder

viw = z position of the wrist

max rangeiw = (length of the upper arm + length of the fore arm) ∗ 2

1Initially, a comparison was carried out to examine the differences between 1D, 2D and 3D features. The
performance results were similar. It was decided to keep mainly the 1D and 2D features as it allows for
different points of view of the posture to be simulated (outside the scope of the thesis).
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It should be noted that the ranges described do not correspond to the entire kinemati-

cally possible range of what the actor can do. Instead, they correspond to the range of

movement that was likely to occur given the scenario. In the case that a wider range of

movement did in fact occur, the values are capped between [0,1]. The same is true for the

orientation features described in the next paragraph.

For the orientation features, i.e., the rotation and bending of the head (V4 and V5),

the rotation and inclination of the shoulders (V24 and V25) and the rotation of the heels

(V26), are computed. The normalised segment connecting two body points vi1 and vi2 are

computed on each 2D cartesian plane, separately (e.g., xy, xz, yz) as follows

fiw =
dir(vi1, vi2) + biw

max rangeiw
(4.2)

where dir(vi1, vi2) is the direction of the segment with respect to the first dimension of the

plane (e.g., for a 2D plane xy, it is the angle between the x axis and the segment), biw is

the minimum angle that that body segment may portray and max rangeiw is the maximum

range that that body segment can cover. For example, for the bending of the head in the

plane yz (V5), biw = 30 and max rangeiw = 80.

Given the 3D space x, y, z, and the position of the left heel (hee1) and the right heel

(hee2) in this space, the 3D distance between the heels (V27) is computed as follows

fiw =
3D Euclidean Distance(heei1, heei2)

max rangeiw
(4.3)

4.4 Low-Level Posture Description Analysis

The low-level posture description was analysed to evaluate the discriminative power of each

low-level feature. To do so, each low-level feature fiw was subjected to one-way ANOVAs for

the set of emotion labels L for each of the three observer groups OJA, OSL, OUS separately.

The results are summarised in Tables 4.5, 4.6 and 4.7, respectively. Listed in the first
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column of each Table are the low-level features shown to be important for discriminating

between emotions with the significance level shown in the last column. The means for each

emotion label lj are shown in the middle four columns. The superscript letter pairs listed

with the means denote significant differences between those pairs of emotion labels according

to Tamhane’s T2 post hoc comparisons, implemented for unequal variances (verified using

Levene’s test of homogeneity of variance). Boxplots are used to highlight and discuss the

results. The outliers in the boxplots are illustrated with circles (i.e., the datum is 1.5 times

the interquartile range) and asterisks (i.e., the datum is 3 times the interquartile range).

The number beside each outlier indicates the row of the file in which the datum (i.e., posture

pi) can be found.

4.4.1 Japanese observers

The ANOVA results for the Japanese observers are depicted in Table 4.5. Significant dif-

ferences were obtained for 20 of the 24 low-level posture features. For the majority of the

features (V5-V9, V14, V16-V23), the main differences occur between sad and the other emo-

tion categories. For V5, the forward/backward bending of the head (the boxplot in Figure

4.9(a)), the most interesting significant differences occur for fear with sad, and happy with

sad. It is noticeable that for fear and happy, the head is generally straight up or bent back-

ward slightly, whereas for sad (apart from four outliers) the head is almost bent forward

as far as possible. For the vertical distance of the hands from the shoulders (V7), shown

in Figure 4.9(b), even though differences are seen between angry and happy, the most no-

ticeable result is that sad is significantly different from the other emotion categories. Other

vertical differences occur for the distance of the hands from the elbows (V16), shown in

Figure 4.9(c), particularly between happy and the other three emotions, and between sad

and the other three emotions. For sad, the arm is extended straight down, close to body,

whereas for happy, the arm is raised over the head.

Examples of the typical postures that the Japanese assigned to each emotion category

are shown in Figure 4.10. Angry is associated to postures in which the head is bent forward
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Figure 4.9: Examples of low-level posture description features with significant differences
between emotions for the Japanese observers. (a) The forward/backward bending of the
head (V5); (b) The vertical distance of the hand from the shoulder (V7); (c) The vertical
distance of the hand from the elbow (V16)
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Table 4.5: The low-level posture description features which reached significance between
the emotions for the Japanese observers (one-way ANOVAs with df = 3 (emotions)). For
each feature fiw, a-e pairs indicate the significant differences between means according to
Tamhane’s T2 post-hoc comparisons.

Japanese observers
Means for affective states

Low-level feature Angry Fear Happy Sad p
V5 - OrientationY Z : B.Head - F.Head axis .36abc .62ad .71be .10cde .000
V6 - Distancez: R.Hand - R.Shoulder .67ab .61c .47ad .96bcd .000
V7 - Distancez: L.Hand - L.Shoulder .77abc .63ad .53be .96cde .000
V8 - Distancey: R.Hand - R.Shoulder .61a .61b .64c .86abc .000
V9 - Distancey: L.Hand - L.Shoulder .70a .61b .65c .88abc .000
V10 - Distancex: R.Hand - L.Shoulder .56a .49 .42ab .58b .005
V11 - Distancex: L.Hand - R.Shoulder .60a .58b .41abc .58c .001
V12 - Distancex: R.Hand - R.Elbow .69ab .59c .42acd .57bd .000
V13 - Distancex: L.Hand - L.Elbow .74ab .63 .47a .58b .000
V14 - Distancex: R.Elbow - L.Shoulder .32a .29b .32c .50abc .004
V15 - Distancex: L.Elbow - R.Shoulder .94ab .83ac .96cd .83bd .000
V16 - Distancez: R.Hand - R.Elbow .54ab .44cd .22ace .96bde .000
V17 - Distancez: L.Hand - L.Elbow .49abc .35ad .23be .68cde .000
V18 - Distancey: R.Hand - R.Elbow .70a .63b .69c .89abc .003
V19 - Distancey: L.Hand - L.Elbow .73a .69b .67c .91abc .002
V20 - Distancey: R.Elbow - R.Shoulder .43a 47b .48c .59abc .023
V21 - Distancey: L.Elbow - L.Shoulder .49 .43a .49 .58a .037
V22 - Distancez: R.Elbow - R.Shoulder .77a .75b .67c .96abc .000
V23 - Distancez: L.Elbow - L.Shoulder .87a .77b .71c .95abc .000
V27 - 3D −Distance: R.Heel - L.Heel .42 .36a .57 .56a .005

slightly, the arms are bent slightly, and the hands remain close to the body between shoulder

and hip height. This is somewhat different to features denoting angry in Coulson’s study

[Cou04]. The difference is that Coulson found angry attributed to postures with a backward

bending head and arms held frontal. The similarity between the two studies is that arms

are somewhat raised. Wallbott [Wal98] also identifies angry to postures with arms in front

of the body.

Postures that signify fear for the Japanese are similar to Coulson’s findings. The fear

posture configuration shows a slightly backward bent head, with the arms somewhat frontal

and lateral and bent at the elbow. Happy postures for the Japanese are also similar to
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Figure 4.10: Avatar examples representing typical postures according to the posture de-
scription analysis for the four emotion categories according to the Japanese observers. (a)
Angry; (b) Fear; (c) Happy; (d) Sad

Coulson’s study. In both, happy is identified as having a backward bent head (more than

for fear), with arms raised to shoulder height or over head. The difference between the two

is that Coulson found straight arms to be indicative of happy, whereas the arms are bent

at the elbows for the Japanese. Similar to both Coulson’s study and the Japanese results,

elated joy in Wallbott’s study claims a backward bending head. However, different from

Coulson’s study and the Japanese results, Wallbott found the arms stretched out frontally

to be indicative of elated joy.

Sad in both this thesis and Coulson’s study is characterised by a head bent far forward

and arms straight, extended down along the body. The results are similar the postural

configuration of both sadness and shame in Wallbott’s study which is characterised by a

collapsed upper body.
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4.4.2 Sri Lankan observers

The results for the Sri Lankan observers are depicted in Table 4.6. Significant differences

were obtained for 19 of the 24 low-level posture features. Shown in the boxplot in Figure

4.11(a), for the forward/backward bending of the head (V5), a very forward head bend is

seen for sad, with sad significantly different from the three other emotions. The height of

the hands in relation to the shoulders (V7), shown in Figure 4.11(b), and the elbows (V16),

shown in Figure 4.11(d), is significant for distinguishing happy from the other emotions and

sad from the other emotions. The arm is raised for happy, whereas the arm is extended

down for sad. The lateral extension of the hands (V11), shown in Figure 4.11(c) is also

important for happy. In fact, the hands are very laterally extended.

Examples of the typical postures that the Sri Lankans assigned to each emotion category

are shown in Figure 4.12. In general, the Sri Lankans associate angry and fear to a wide

variety of postures. No distinct head position indicates angry. A more defined head position

is seen for fear, ranging from no bend to slightly bent backward. This result is similar to

Coulson’s [Cou04] findings, however the backward bending of the head was more pronounced

in Coulson’s study.

Happy postures for the Sri Lankans are similar to Coulson’s findings. In both, the

happy postures are demonstrated by arms that are mainly slightly vertical and lateral with

a backward bending head. The difference between the two studies is that Coulson specifies

that there is no bend of the elbows. The backward bending of the head for the Sri Lankans

corresponds to Wallbott’s [Wal98] findings, however Wallbott found the arms stretched out

frontal instead of vertical and lateral.

Sad for the Sri Lankans is depicted by a closed body, i.e., the arms are straight down with

little frontal or lateral positioning, and the head is very bent forward. The configuration of

sadness for Coulson and Wallbott is similar to the results found here.
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Figure 4.11: Examples of low-level posture description features with significant differences
between emotions for the Sri Lankan observers. (a) The forward/backward bending of the
head (V5); (b) The vertical distance of the hand from the shoulder (V7); (c) The lateral
distance of the hand from the opposite shoulder (V11); (d) The vertical distance of the hand
from the elbow (V16)
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Table 4.6: The low-level posture description features which reached significance between
the emotions for the Sri Lankan observers (one-way ANOVAs with df = 3 (emotions)). For
each feature fiw, a-e pairs indicate the significant differences between means according to
Tamhane’s T2 post-hoc comparisons.

Sri Lankan observers
Means for affective states

Low-level feature Angry Fear Happy Sad p
V5 - OrientationY Z : B.Head - F.Head axis .48ab .61c .68ad .11bcd .000
V6 - Distancez: R.Hand - R.Shoulder .68ab .66cd .42ace .89bde .000
V7 - Distancez: L.Hand - L.Shoulder .74ab .68c .51ad .92bcd .000
V8 - Distancey: R.Hand - R.Shoulder .58a .63b .64c .82abc .000
V9 - Distancey: L.Hand - L.Shoulder .62a .66b .66c .85abc .000
V10 - Distancex: R.Hand - L.Shoulder .53a .54b .37abc .61c .000
V11 - Distancex: L.Hand - R.Shoulder .59a .60 .43ab .59b .002
V12 - Distancex: R.Hand - R.Elbow .64a .66b .39abc .62c .000
V13 - Distancex: L.Hand - L.Elbow .73ab .65 .47a .61b .000
V14 - Distancex: R.Elbow - L.Shoulder .32a .31b .25c .49abc .000
V15 - Distancex: L.Elbow - R.Shoulder .94a .85 .92 .85a .003
V16 - Distancez: R.Hand - R.Elbow .53ab .49cd .20ace .83bde .000
V17 - Distancez: L.Hand - L.Elbow .43ab .36c .26ad .65bcd .000
V18 - Distancey: R.Hand - R.Elbow .66a .67b .67c .87abc .004
V19 - Distancey: L.Hand - L.Elbow .66a .76b .67c .89abc .000
V20 - Distancey: R.Elbow - R.Shoulder .42 .46 .50 .55 .046
V22 - Distancez: R.Elbow - R.Shoulder .78a .78b .60c .94abc .000
V23 - Distancez: L.Elbow - L.Shoulder .86a .83b .66abc .93c .000
V27 - 3D −Distance: R.Heel - L.Heel .39a .40 .52 .55a .046

4.4.3 American observers

The results for the American observers are depicted in Table 4.7. Significant differences are

obtained for 20 of the 24 low-level posture features. Sad is most characteristically different

from the other emotions. The majority of the significant differences occur between sad and

the other three emotions. Angry and happy each have only one feature for which significant

differences are obtained against the other emotions and fear does not have any. In the case

of the forward/backward bending of the head (V5), for sad, the head is extremely bent

forward, shown in Figure 4.13(a). Sad is significantly different from the other emotions.

Angry is also significantly different from the other emotions, but with greater variation in
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Figure 4.12: Avatar examples representing typical postures for the four emotion categories
according to the Sri Lankan observers. (a) Angry; (b) Fear; (c) Happy; (d) Sad

the amount of head bend, ranging from a slight bend backward to very bent forward. Shown

in Figure 4.13(b), the lateral distance of the hand from the elbow (V12), the hand is more

laterally open for happy than for the other emotions.

Examples of the typical postures that the Americans assigned to each emotion category

are shown in Figure 4.14. Completely opposite to angry postures found in Coulson’s [Cou04]

study, angry for the Americans is shown with a head bent forward somewhat and some lateral

opening of the arms (similar to Wallbott’s [Wal98] findings), typically shown with the elbows

bent.

While fear is indicated by a wide variety of postures, some postures are shown with a

slightly backward bending head, elbows bent with hands raised to around shoulder height,

similar to Coulson’s findings. For other fear postures, when there is lateral extension of the

arms, the hands typically are also raised over the head.

Happy postures are also diverse for the Americans. The majority of the happy postures

show a backward bending head (similar to Wallbott’s and Coulson’s studies), some lateral

opening of the arms, the elbows often bent and hands raised to either shoulder height or
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Table 4.7: The low-level posture description features which reached significance between
the emotions for the American observers (one-way ANOVAs with df = 3 (emotions)). For
each feature fiw, a-e pairs indicate the significant differences between means according to
Tamhane’s T2 post-hoc comparisons.

American observers
Means for affective states

Low-level feature Angry Fear Happy Sad p
V5 - OrientationY Z : B.Head - F.Head axis .42abc .63ad .71be .06cde .000
V6 - Distancez: R.Hand - R.Shoulder .65a .60b .53c .91abc .000
V7 - Distancez: L.Hand - L.Shoulder .74a .64b .57c .94abc .000
V8 - Distancey: R.Hand - R.Shoulder .58a .61b .66c .83abc .000
V9 - Distancey: L.Hand - L.Shoulder .65a .62b .67c .86abc .000
V10 - Distancex: R.Hand - L.Shoulder .54 .50 .42a .60a .001
V11 - Distancex: L.Hand - R.Shoulder .62a .57 .43ab .58b .001
V12 - Distancex: R.Hand - R.Elbow .68a .60b .42abc .62c .000
V13 - Distancex: L.Hand - L.Elbow .77ab .63 .48a .60b .000
V14 - Distancex: R.Elbow - L.Shoulder .29a .30b .32c .49abc .001
V15 - Distancex: L.Elbow - R.Shoulder .93a .85 .94b .85ab .004
V16 - Distancez: R.Hand - R.Elbow .53a .39b .33c .85abc .000
V17 - Distancez: L.Hand - L.Elbow .45a .33b .29c .66abc .000
V18 - Distancey: R.Hand - R.Elbow .66a .64b .70c .87abc .004
V19 - Distancey: L.Hand - L.Elbow .70a .70b .70c .88abc .007
V20 - Distancey: R.Elbow - R.Shoulder .40a .46 .50 .56a .016
V21 - Distancey: L.Elbow - L.Shoulder .45a .44b .50 .58ab .019
V22 - Distancez: R.Elbow - R.Shoulder .74a .76b .68c .95abc .000
V23 - Distancez: L.Elbow - L.Shoulder .85a .80b .71c .95abc .000
V27 - 3D −Distance: R.Heel - L.Heel .40 .38 .55 .52 .031

over head. The verticality of the arms is similar to Coulson’s study, however, as stated in

Section 4.4.2, Coulson specifies straight arms, i.e., no bend at the elbows.

Sad is demonstrated with a slight frontal positioning of the arms. Other than that, sad

postures appear closed vertically and laterally, which is the same as the postures associated

with the results for the Japanese and the Sri Lankans presented here, as well as for both

Coulson’s and Wallbott’s studies.
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Figure 4.13: Examples of low-level posture description features with significant differences
between emotions for the American observers. (a) The forward/backward bending of the
head (V5); (b) The lateral distance of the hand from the elbow (V12)

Figure 4.14: Avatar examples representing typical postures for the four emotion categories
according to the American observers. (a) Angry; (b) Fear; (c) Happy; (d) Sad
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4.5 Automatic Recognition of Basic Emotions from Pos-

ture

Armed now with a better understanding of how human observers attribute emotion to

acted postures, automatic recognition models can be built, tested and evaluated against

the human recognition benchmarks that were defined in Section 4.2.3. The hypothesis is

that the automatic recognition models can achieve accuracy rates similar to the benchmarks

set by the human observers. The models were tested for their ability to generalise to new

observers (Figure 3.7) and to new postures (Figure 3.8) as explained in Chapter 3. To build

the automatic recognition models, each static posture pi was associated with a vector of

low-level posture features Fi = {fi1, ..., fi24} listed in Table 4.4 and a ground truth label

gtl(pi, O).

The topology of the MLP used in this study consists of three layers: one input, one

hidden and one output. The number of nodes in the input layer corresponds to the number

of features used. The number of nodes in the hidden layer corresponds to the number of

input nodes divided by two. The output layer contains four nodes, one node corresponding

to each emotion label. 10,000 epochs were used to train the recognition models.

4.5.1 Generalising to New Observers

As with the human observer agreement examination, automatic recognition models were

built i) between the three groups of observers OJA, OSL, OUS , and ii) with the disjoint

subsets created from all the observers combined O. For the recognition models built on the

three separate groups of observers, the models were trained on one observer group (e.g.,

OJA) and tested on a second observer group (e.g., OSL), leaving the third group (e.g., OUS)

out. This process continued until models were built and tested for all combinations of the

three groups. The results are listed in the ‘automatic recognition’ total (fourth) column of

Table 4.8 and shown in Figure 4.15. The average recognition across all six trials was 77.16%

(SD = 3.5%).



131

Table 4.8: The testing and evaluation results between observer groups OJA, OSL, OUS for
generalising to new observers. Columns 2 and 3 list the observer groups used to train and
test the models. Column 4 lists the automatic recognition model performances for each trial.
The remaining four columns list the recognition rates for each emotion label lj for each trial.

Trial Train Test Auto. rec. Angry Fear Happy Sad
set set total

1 JA SL 74.07% 67.65% 60.61% 78.26% 100%
2 JA US 82.41% 76.47% 75.76% 91.3% 94.44%
3 SL JA 73.15% 65.71% 86.96% 69.23% 75%
4 SL US 77.78% 68.57% 82.61% 76.92% 87.5%
5 US JA 79.63% 83.87% 89.29% 76.92% 65.22%
6 US SL 75.93% 77.42% 67.86% 73.08% 86.96%

Average 77.16% 73.28% 77.18% 77.62% 84.85%
SD 3.5% 7.08% 11.27% 7.48% 12.77%

Table 4.9: The testing and evaluation results for the 10 trials created from all observers
combined O for generalising to new observers. Column 2 lists the automatic recognition
model performances for each trial. The remaining four columns list the recognition rates for
each emotion label lj for each trial.

Trial Auto rec. total Angry Fear Happy Sad
1 86.27% 82.8% 74.1% 95.7% 95.7%
2 87.25% 76.7% 88 % 88.5% 100 %
3 86.27% 83.9% 74.1% 95.7% 95.2%
4 88.24% 78.1% 100 % 96.2% 81.8%
5 81.37% 73.3% 80.8% 82.6% 91.3%
6 83.33% 73.3% 77.8% 91.7% 95.2%
7 84.31% 72.4% 90.9% 80.6% 100 %
8 85.29% 81.5% 81.5% 88.9% 90.5%
9 91.18% 86.2% 87.5% 92.6% 100 %
10 87.25% 81.5% 91.3% 86.2% 91.3%

Average 86.08% 78.97% 84.6% 89.87% 94.1%
SD 2.73% 4.92% 8.38% 5.52% 5.67%



132

Figure 4.15: Observer generalisation results for the three groups separate compared with
the benchmark

For the recognition models built on the 10 trials created from all observers combined O,

the models were trained with the previously unused subset Os,3 data and tested with subset

Os,1 with s = 1, ..., 10. The results are listed in the second column of Table 4.9 and shown in

Figure 4.16. The average recognition across all 10 trials was 86.08% (SD = 2.73%). The last

four columns of both Tables list the recognition rates for the individual emotion categories.

Evaluation and Discussion

In building automatic models for generalising to new observers, the goal was to achieve

recognition rates equivalent to the human observer benchmarks. Recall from Section 4.2.3,

the benchmark computed between the observer group pairs (e.g., OJA and OSL) was 76.54%.

For the set of 10 trials carried out with the subsets Os,1 and Os,3 created from all the

observers combined O, the benchmark was 84.80%.

For the automatic recognition models built between the observer group pairs separately

(Table 4.8 and Figure 4.15), it can be seen that three of the six models achieve recognition

rates better than the benchmark. While three recognition models do not outperform the

benchmark, they achieve recognition rates just below the benchmark. The two models that



133

Figure 4.16: Observer generalisation results for the three groups combined across the 10
trials compared with the benchmark

achieve the highest recognition performances are trials 2 (the model trained on the Japanese

OJA and tested with the Americans OUS) and 5 (the model trained on the Americans OUS

and tested with the Japanese OJA). These results may indicate that the Japanese and the

Americans are more similar in the features they consider important than the Sri lankans are

with these cultures. However, this is not the case according to Hofstede’s cultural dimensions

[Hof06].

According to the individualism dimension, the Sri Lankans and the Japanese have quite

similar ratings (37 and 43, respectively). This places them on the collectivistic side of

the scale, meaning that typically there is a fairly strong feeling of belonging to a group

for these cultures. On the other hand, the Americans rank significantly higher (91) on

this dimension, placing them firmly on the individualistic side of the scale. The people

in individualistic societies are deemed to have looser ties to others, and pride themselves

on being different from one another. According to the uncertainty dimension, it is the Sri

Lankans and the Americans who are very similar (42 and 43, respectively). These ratings

place the Sri Lankans and the Americans on the uncertainty accepting side of the scale,

indicating societies in which it is acceptable to have ideas and beliefs that are different from
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(a) E3 (b) E1 (c) F4 (d) I6

(e) J8 (f) K10 (g) K6

Figure 4.17: The postures that were misclassified as sad by the six recognition models built
with the observer group pairs when the ground truth label gtl(pi, O) was angry. The letter
and number pair under each posture image refers to the location of that posture in the pie
charts in Figures 4.2, 4.4, 4.5 and 4.6

other members in the society. The Japanese are considered drastically different (92), placing

them on the uncertainty avoiding side of the scale. People brought up in cultures that rank

high in the uncertainty dimension will feel more uncomfortable in uncertain, novel situations

and attempt to avoid them as much as possible.

Looking at the second to last row of both Tables which shows the average recognition

rate for the recognition models and for the individual emotion categories, it can be seen that

the lowest recognition rate occurred for angry and the highest recognition rate occurred for

sad. For the automatic recognition models using Os,1 and Os,3, sad was almost never

misclassified.

For the six trials in which the three observer groups were tested against each other, e.g.,

OJA and OSL, when sad was misclassified, it was almost always misclassified as angry. Ex-

amples of the postures that were misclassified as either angry or sad are illustrated in Figure

4.17. In all of these postures, the head is bent forward which was a typical characteristic

of sad postures for all of the human observer agreement analyses as well as for sad in the

case of the Japanese and the Americans. The postures presented in the figure also display

one or both arms bent at the elbow, which was found to be indicative of angry for all three
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observer groups. For some of the postures, the arm position is slightly frontal which was a

common position for angry postures in Coulson’s study [Cou04]. The exception to the arm

configuration can be seen in Figure 4.17(g) in which the arms are straight and extended

slightly laterally, giving the body a somewhat open appearance which is more indicative of

happy for the human observers.

4.5.2 Generalising to New Postures

To test the models’ ability to generalise to novel postures, an automatic recognition model

was built for each observer group OJA, OSL, OUS separately, and one model was built for

all the observers combined O. The results are summarised in Table 4.10. The second

column lists the recognition rate for the four emotion categories combined and the remaining

columns list the recognition rates for the individual emotion categories. The results for all

observers combined O are also illustrated in the receiver operator characteristic (ROC)

curves in Figure 4.18. ROC curves demonstrate the relationship between the percentage of

true positives (sensitivity) and the percentage of false positives (1-specificity).

Table 4.10: The testing results for generalising to novel postures for each group of observers
OJA, OSL, OUS (the first three rows) and all three groups combined O (the last row). Column
2 lists the automatic recognition model performances for each observer group. The remaining
4 columns list the recognition rates for each emotion label lj for each observer group.

Observers Auto Rec. total Angry Fear Happy Sad
JA 76.85% 76.47% 63.64% 86.96% 88.89%
SL 62.96% 62.86% 39.13% 69.23% 79.17%
US 66.67% 64.52% 50% 69.23% 86.96%

All combined 73.53% 62.07% 57.69% 84.62% 95.24%

Evaluation and Discussion

In evaluating the automatic recognition results presented in Table 4.10, most noticeable

is that the lowest recognition rate occurred for fear for all of the models, with fear for

the Sri Lankan model lowest at 39.13%. The confusion matrix for the Sri Lankan model
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Table 4.11: The confusion matrix for generalising to novel postures for the Sri Lankans

Sri Lankans

Angry Fear Happy Sad ← classified

22 5 5 3 Angry
11 9 2 1 Fear
4 3 18 1 Happy
2 3 0 19 Sad

Table 4.12: The confusion matrix for generalising to novel postures for the Americans

Americans

Angry Fear Happy Sad ← classified

20 6 2 3 Angry
5 14 8 1 Fear
1 6 18 1 Happy
2 1 0 20 Sad

Table 4.13: The confusion matrix for generalising to novel postures for the Japanese

Japanese

Angry Fear Happy Sad ← classified

26 3 1 4 Angry
7 21 5 0 Fear
1 1 20 1 Happy
0 1 1 16 Sad
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(a) Angry (b) Fear

(c) Happy (d) Sad

Figure 4.18: The ROC curves for the four emotion categories for the automatic recognition
model built for all observers combined for generalising to novel postures. AUC = area under
the curve; CI = 95% confidence interval. (a) Angry; (b) Fear; (c) Happy; (d) Sad

(refer to Table 4.11) reveals that fear postures were most often misclassified as angry. For

the American model, only 50% of the fear postures were correctly classified. While some

fear postures were misclassified as angry (similar to the Sri Lankan model), according to

the confusion matrix (refer to Table 4.12), most of the fear misclassifications occurred for

happy. For the Japanese model, a higher percentage of fear postures were correctly classified

63%, however the same type of misclassifications can be seen - fear postures misclassified as

angry and happy as revealed by the confusion matrix (refer to Table 4.13). Although high

levels of agreement were obtained between the human observers for fear postures, this has

not been the case for automatic posture generalisation models.
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The automatic recognition model results are similar to the findings of Camurri et al

[CMR+04] in which fear dance movements were most often misclassified as anger, as opposed

to Kapur et al [KKVB+05] with fear dance movements most often misclassified as sad. Also

in Camurri et al’s study, another common classification error was fear misclassified as happy.

As discussed in Section 4.2.2, humans may be able to imply movement when viewing static

images of fear postures. However, different from Camurri et al’s and Kapur et al’s studies,

dynamic information is not part of the low-level posture description in this thesis.

4.6 Human Recognition of Affective Dimensions from

Posture

In addition to basic emotion category recognition, affect has been shown to be recognised

according to levels of affective dimensions, such as valence and arousal. The remainder of

this case study focuses on the recognition of affective dimensions from acted posture.

4.6.1 Survey Procedure and Observers

Similar to the emotion category survey, an online survey was conducted to obtain judg-

ments on a set of affective postures. 111 postures were chosen from the 182 postures

collected and described in Section 4.1, i.e., |P | = 111. Each posture was presented on

a separate page in a randomised order. For each page, the observers were asked to rate

each posture pi according to a seven-point Likert scale for a set of four affective dimensions

D = {valence, arousal, potency, avoidance}. An example of the affective dimension posture

judgment survey can be seen in Figure 4.19. 10 observers (six females and four males) par-

ticipated. Given the high agreement results achieved for each cultural group for the emotion

categories and that the same linguistic issues do not exist in the use of affective dimensions,

similar positive results in the affective dimension analysis may be expected. Therefore, the

culture of the observer was not addressed. However, this remains an interesting question

that could be addressed in future work.
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Figure 4.19: An example of the affective dimensions posture judgment survey

4.6.2 Overview of the Survey Data

A general overview of how the set of observers O judged the affective postures was obtained

as the first step in the analysis. To this aim, each affective dimension dg was examined

separately and is represented as a series of bar charts. Due to space constraints, the complete

set of bar charts can be found in Appendix C. Each row is a posture pi and each column

is an affective dimension dg : g = 1, ..., 4. The x-axis shows the rating scale (i.e., 1 to 7)

and the y-axis shows the number of evaluations obtained for each rating in the scale. The

number to the right of the posture image is used as a posture identifier to allow for easy

identification for the discussions that take place in the remainder of the chapter. Presented

in this section are some of the most interesting results.

An initial examination of the postures according to the arousal dimension reveals that

many postures obtained high arousal ratings, i.e., 5 to 7, while very few obtained low arousal

ratings. These results may be due to the use of an acted scenario, from which the resulting

expressions tend to be more exaggerated than if a natural, non-acted scenario were used.

Looking at the postures to which high arousal ratings were attributed, two main types of

posture configurations can be seen and are represented in Figures 4.20 and 4.21. In Figure
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Figure 4.20: Postures rated as high arousal. For each bar chart, the x-axis shows the rating
scale (i.e., 1 to 7) and the y-axis shows the number of evaluations obtained for each rating
in the scale. The number to the right of the posture image is used as a posture identifier to
allow for easy location of the posture in Appendix C
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Figure 4.21: Postures rated as high arousal. For each bar chart, the x-axis shows the rating
scale (i.e., 1 to 7) and the y-axis shows the number of evaluations obtained for each rating
in the scale. The number to the right of the posture image is used as a posture identifier to
allow for easy location of the posture in Appendix C
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Figure 4.22: Postures rated as low arousal. For each bar chart, the x-axis shows the rating
scale (i.e., 1 to 7) and the y-axis shows the number of evaluations obtained for each rating
in the scale. The number to the right of the posture image is used as a posture identifier to
allow for easy location of the posture in Appendix C

4.20, at least one of the arms is bent at the elbow with the hand raised and held near the

face and the head is either straight or slightly bent backward. The other type of high arousal

postures, in Figure 4.21, typically have arms bent at the elbow and the hands raised above

head height, and the head is bent backward.

There were far fewer postures to which low arousal ratings were associated, however the

configurations of those postures are very similar as illustrated in Figure 4.22. The arms are

straight, extended down along the side of the body and the head is bent forward, shown in

Figure 4.22(a). Two other postures, shown in Figure 4.22(b), achieved less consistent, yet

overall low ratings as well. The postural configuration is similar to the postures in Figure

4.22(a), with the addition of the upper body bent forward.

An examination of the valence dimension reveals results similar to the arousal dimension.

The postures to which high valence ratings were achieved were a mixture of the two types of
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Figure 4.23: Postures rated as low valence. For each bar chart, the x-axis shows the rating
scale (i.e., 1 to 7) and the y-axis shows the number of evaluations obtained for each rating
in the scale. The number to the right of the posture image is used as a posture identifier to
allow for easy location of the posture in Appendix C

high arousal postures. In the case of low valence, several postures were assigned low ratings.

These postures are depicted in Figure 4.23 and fall into two main configuration types. The

postures in the last three rows of the Figure are all similar with the head bent forward and

the arms extended straight down along the body. These postures also obtained mainly low

ratings on the arousal dimension. Illustrated in the first row of the Figure is the second type

of low valence postures. These postures obtained high ratings on the arousal dimension and

the postural configuration represents this difference. These postures are distinctly different

from the other low valence postures with arms bent at the elbows and the hands brought

up to face level in a somewhat protective pose.

An investigation of the avoidance and potency dimensions reveals few postures that were
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Figure 4.24: Potency and avoidance postures with ratings spread across the rating scale.
For each bar chart, the x-axis shows the rating scale (i.e., 1 to 7) and the y-axis shows the
number of evaluations obtained for each rating in the scale. The number to the right of
the posture image is used as a posture identifier to allow for easy location of the posture in
Appendix C
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Figure 4.25: Potency and avoidance postures with ratings at both ends of the rating scale
causing a bimodal distribution. For each bar chart, the x-axis shows the rating scale (i.e., 1
to 7) and the y-axis shows the number of evaluations obtained for each rating in the scale.
The number to the right of the posture image is used as a posture identifier to allow for easy
location of the posture in Appendix C
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rated consistently at either the low or high ends of the scale. Instead, there appears to be a

lot of ambiguity for many postures, with ratings spread across almost the entire range of the

scale (refer to Figure 4.24) or with ratings split between low and high, causing a bimodal

distribution (refer to Figure 4.25).

4.6.3 Creating Benchmarks

The purpose of this section is to define the benchmarks for human recognition of dimensions

of affect from whole body postures. These benchmarks define the target recognition rates

for the automatic recognition models discussed later in the chapter.

Observer agreement reliability results

The first task is to examine the level of consistency in how the observers rated the postures.

Cronbach’s α was computed for the entire set of observers together O for each affective

dimension dg : g = 1, ..., 4 separately. The affective dimension dg with the highest strength

of agreement was arousal with an α of 0.885. The valence dimension was second with an α of

0.807. Observer agreement reliability was lowest for potency (α = .531) and avoidance (α =

.522). Recall from Chapter 3 that an α of 0.7 and above generally indicates high reliability

[Fie05].

Given the low Cronbach’s α levels of the potency and avoidance dimensions, a principal

components analysis (PCA) was subsequently carried out to assess the results more con-

cretely and determine whether or not to continue with the analysis of these two dimensions.

The purpose was to investigate whether the observers had used different constructs when

evaluating the postures according to these two dimensions. For each dimension dg, PCA

was applied to a 111 x 7 x 10 matrix which has 111 cases (the postures) and 10 variables

(the observers). The values in the matrix correspond to the ratings (on the 7 point scale)

given by each of the 10 observers for the 111 postures. It is expected that if the dimension is

defined by only one construct (i.e., the meaning assigned to the evaluated dimension) and all

the observers considered that dimension to have that meaning, the PCA for that dimension
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would return only one component with an eigenvalue > 1 (Kaiser criterion [Kai60], i.e., a

component with an eigenvalue > 1 represents at least one variable). If this is not the case,

the ratings from the observers may relate to different non-comparable constructs. Further-

more, an observer ok was considered highly loaded if the absolute component loading value

was ≥ 0.50. The results for the two dimensions are discussed separately.

• Potency: The PCA analysis of the potency ratings revealed that 4 components had an

eigenvalue > 1 (i.e., each of these 4 components represents at least 1 observer’s ratings) and

different observers load onto different components. Furthermore, the 4 components together

accounted for only 58.85% of the variance, indicating that the term potency was used with

several different meanings. Five observers loaded onto the first component which covered

22.02% of the variance. Two observers loaded onto the second component which covered

14.71% of the variance. Two observers loaded onto the third component which covered

11.97% of the variance. One observer loaded onto the fourth component which covered

10.15% of the variance. To conclude, given that not all of the observers loaded onto a single

component, this signifies that the observers seemed to be using different interpretations of

the term potency.

• Avoidance: The PCA analysis of the avoidance ratings revealed that 3 had an eigen-

value > 1 (i.e., each of these 3 components represents at least 1 observer’s ratings) and

different observers load onto different components. Furthermore, the 3 components together

accounted for only 51.47% of the variance, indicating that the term avoidance was used with

several different meanings. Three observers loaded onto the first component which covered

22.54% of the variance. Two observers loaded onto the second component which covered

17.52% of the variance. One observer loaded onto the third component which covered 11.42%

of the variance. This result shows that more than half of the observers have not been used,

further indicating that the observers may have been using different interpretations of the

term avoidance.

Given the lack of agreement amongst O for dpotency and davoidance, using a unique value

c for each posture pi to train and evaluate automatic recognition models is not viable. One
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possible interpretation is that these two dimensions are more grounded on the dynamic

characteristics of the gesture, rather than the configurational characteristics. Based on

these results, it was decided to eliminate further examination of the potency and avoidance

dimensions.

Benchmarks

To set the benchmarks of human recognition of affective dimensions from body posture,

random repeated sub-sampling was used to create a set of trials, i.e., s = 1, ..., 10. For each

trial, the set of observers O was split into three disjoint subsets Os,1, Os,2 and Os,3. Os,1 and

Os,2 each contained three observers and Os,3 contained two observers. For each subset, a

ground truth rating gtm(pi, Osk) was assigned to each posture pi for each dimension dg. The

between observers agreement B.Agr(dg, Osk), defined in Equation (3.4), and Cronbach’s α

were computed between Os,1 and Os,2 for each of the 10 trials, for the valence and arousal

dimensions separately. For each dimension dg : g = valence, arousal, the benchmark is

computed as the average between observers agreement B.Agr(dg, Osk) across the 10 trials.

For valence the benchmark is 83.11%, SD = 1.66% and for arousal the benchmark is 86.80%,

SD = 1.3%. The results are listed in Table 4.14.

4.6.4 Discussion

The overview of the data revealed that there was little consistency in how the set of observers

O seemed to rate the set of postures P for the potency and avoidance dimensions. The survey

data overview was better for the valence and arousal dimensions. Why the poorer results

for the potency and avoidance dimensions? It is possible that observers have more difficulty

understanding what is meant by these terms. Another possibility is that the addition of other

information, such as context or additional modalities could help increase between observers

agreement B.Agr(dg, Osk) and reliability levels. These possibilities may be investigated in

future work. Based on the PCA results, it was decided to discontinue further analysis on

the potency and avoidance dimensions at this time.
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Table 4.14: The benchmarks computed for the affective dimensions. The B.Agr(dg, Osk)
are listed in column 3 and Cronbach’s α levels are listed in column 4. The benchmarks,
listed in the last column, is the average across all 10 B.Agr(dg, Osk) levels obtained for that
affective dimension.

Human recognition benchmarks

Affective dim Trial B.Agr(dg, Osk) ∗ 100 Cronbach’s α Benchmark

Valence

1 81.83% 0.601

83.11%

2 85.89% 0.668
3 83.48% 0.691
4 82.88% 0.539
5 83.63% 0.758
6 80.38% 0.592
7 80.93% 0.641
8 83.78% 0.686
9 84.53% 0.654
10 83.78% 0.614

Arousal

1 87.54% 0.781

86.80%

2 86.34% 0.834
3 86.94% 0.818
4 85.43% 0.799
5 88.14% 0.814
6 87.84% 0.788
7 88.89% 0.86
8 84.99% 0.716
9 85.43% 0.684
10 86.49% 0.783

For the arousal dimension, high levels of between observers agreement B.Agr(dg, Osk)

and reliability were found. The benchmark for arousal set at 86.8%; higher than the bench-

mark for valence (83.11%). According to the INDSCAL findings of the study by Paterson et

al [PPS01] in which head and arm movements for affective drinking and knocking motions

were mapped to an affective space, arousal was identified as the first dimension of a 2D

affective space, accounting for 70% of the variance. Valence was identified as the second

dimension, accounting for 17% of the variance. These results may indicate that arousal is

more easily identified from bodily expressions than valence. Indeed, findings by Clavel et al

[CPM+09] appear to validate that assumption. In their study, face only and posture only

levels of arousal and valence of an affective virtual agent were judged by observers. The

results showed that arousal was correctly perceived from posture more than valence was.
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4.7 Low-Level Posture Description Analysis

To assess the discriminative power of the low-level posture description for distinguishing be-

tween ratings of valence and arousal, the same set of features F = {fi1, ..., fi24} described in

Section 4.3 was used. Each low-level posture feature fiw was subjected to one-way ANOVAs

for each affective dimension dg separately. The results are presented in Tables 4.15 and 4.16.

As with the previous ANOVA results discussed for the set of emotion labels L, listed in the

first column of the following Tables are the low-level features shown to be important for

discriminating between levels of the affective dimensions with the significance level shown

in the last column. The means for each affective dimension dg rating c are shown in the

middle seven columns. The superscript letter pairs listed denote significant differences be-

tween those rating pairs according to Tamhane’s T2 post-hoc comparisons implemented for

unequal variances (verified using Levene’s test of homogeneity of variance). Reported in this

section is a discussion on the most interesting results of each affective dimension, illustrated

with a boxplot and corresponding avatar examples.

4.7.1 Valence

The results for the valence dimension are listed in Table 4.15. Significant differences were

obtained for 14 of the 24 low-level posture features. For the majority of the posture features,

the main differences occur between scale rating 7 and ratings 2 to 4 and sometimes between

ratings 7 and 1 or 5. The posture features that achieved the most interesting differences are

depicted in the boxplots in Figure 4.26. For V10, the lateral extension of the hand from the

opposite shoulder (Figure 4.26(a)), the significant differences occur between rating 7 and

ratings 1 to 4. The rating 7 postures show hands that are laterally extended far away from

the opposite shoulder, whereas the postures that achieved ratings of 1 to 4 are less laterally

distant. Examples of the typical postures for these ratings are represented in Figure 4.27.

For V15, the lateral extension of the elbow from the opposite shoulder (Figure 4.26(b)),

the significant differences occur between ratings 1 to 3 and ratings 6 and 7. The postures
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Figure 4.26: Examples of low-level posture description features with significant differences
between scale ratings for valence. (a) The lateral extension of the hand from the opposite
shoulder (V10); (b) The lateral extension of the elbow from the opposite shoulder (V15);
(c) The vertical extension of the hand from the elbow (V16); (d) The vertical extension of
the elbow from the shoulder (V22)
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rated 6 and 7 have elbows that are very laterally extended away from the opposite shoulder,

as illustrated by the examples in Figure 4.28(d)-(f). These postures differ from the low

rated, i.e., 1 to 3, postures in that the elbow distance from the opposite shoulder has a

wider range. However, the elbow is still fairly extended. Posture examples are shown in

Figure 4.28(a)-(c).

Figure 4.27: Avatar examples representing typical postures for the significant differences
of V10, the lateral extension of the hand from the opposite shoulder. (a)-(d) Representing
ratings 1 to 4 are postures 44, 46, 71 and 107; (e) and (f) Representing rating 7 are postures
43 and 61. Recall from Section 4.6.2 that the numbers refer to the posture position in the
bar charts located in Appendix C for easy cross-referencing

Figure 4.28: Avatar examples representing typical postures for the significant differences
of V15, the lateral extension of the elbow from the opposite shoulder. (a)-(c) Representing
ratings 1 to 3 are postures 94, 100 and 103; (d)-(f) Representing ratings 6 and 7 are postures
11, 60 and 82. Recall from Section 4.6.2 that the numbers refer to the posture position in
the bar charts located in Appendix C for easy cross-referencing

The vertical distance of the hand from the elbow (V16) is depicted in boxplot (c) of

Figure 4.26. For this feature the significant differences occur between ratings 2 to 4 and

ratings 6 and 7. The range of vertical distance for the postures with ratings 2 to 4 is quite
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Figure 4.29: Avatar examples representing typical postures for the significant differences of
V16, the vertical extension of the hand from the elbow. (a)-(c) Representing ratings 2 to 4
are postures 5, 54 and 111; (d)-(f) Representing ratings 6 and 7 are postures 43, 61 and 82.
Recall from Section 4.6.2 that the numbers refer to the posture position in the bar charts
located in Appendix C for easy cross-referencing

Figure 4.30: Avatar examples representing typical postures for the significant differences of
V22, the vertical extension of the elbow from the shoulder. (a)-(c) Representing ratings 1
to 5 are postures 29, 39 and 109; (d)-(f) Representing rating 7 are postures 2, 13 and 50.
Recall from Section 4.6.2 that the numbers refer to the posture position in the bar charts
located in Appendix C for easy cross-referencing

vast (i.e., the distance ranges from about 0.2 to 0.9). Posture examples are shown in Figure

4.29(a)-(c). It is noticeable that the hand height position in relation to the elbow changes

from below the elbow, to the same height and above. Conversely, the range of vertical

distance for the postures with ratings of 6 and 7 is very narrow, from about 0.03 to 0.25,

and it can be seen in the posture examples (Figure 4.29(d)-(f)) that the hand is consistently

raised above the elbow.

The final posture feature to examine for the valence dimension is the vertical distance of

the elbow from the shoulder (V22), illustrated in the boxplot in Figure 4.26(d). In this case,
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the significant differences occur mainly between rating 7 and ratings 1 to 5. The postures

with ratings 1 to 5 show the elbow just below shoulder height, typically raised to about chest

height, whereas the elbow in the 7 rating postures is vertically level with, or raised above

the shoulder. Examples of the 1 to 5 rating postures are depicted in Figure 4.30(a)-(c) and

7 rating postures are shown in (d)-(f).

4.7.2 Arousal

The results for the arousal dimension are listed in Table 4.16. Significant differences were

obtained for 14 of the 24 low-level posture features. The posture features that achieved

the most interesting differences are depicted in the boxplots in Figure 4.31. For the for-

ward/backward bending of the head, V5 (Figure 4.31(a)), the significant differences occur

between ratings 1 and 2 against ratings 4 to 7. The postures with ratings 1 and 2 have a

head that is almost completely bent forward, whereas the head in the postures with ratings

between 4 and 7 range from somewhat bent forward to completely bent back as the rating

increases. Posture examples can be seen in Figure 4.32.

The next posture feature to examine is V7, the vertical distance of the hand from the

shoulder (Figure 4.31(b)). Significant differences occur between ratings 5 to 7 against ratings

1 to 4. According to the boxplot, the hands in postures with ratings 1 to 4 are extended

almost completely down at the side of the body, with little variation in hand position.

Examples can be seen in Figure 4.33(a)-(c). There is much greater variation in vertical

hand position for postures with rating 5, ranging from fairly down to waist height. The

hand height increases further with ratings 6 and 7, ending with the hand raised up higher

than the shoulder as demonstrated by the examples in Figure 4.33(d)-(f).

Another posture feature exhibiting interesting significant differences between scale rat-

ings is the frontal extension of the hand from the shoulder, V8 (Figure 4.31(c)). Differences

occur between rating 1 against ratings 5 and 6, and between rating 2 against ratings 5 to

7. For postures with ratings 1 or 2, the body is fairly closed and the hands typically remain

close to the body, not extended in front. Examples of these postures can be seen in Figure
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Figure 4.31: Examples of low-level posture description features with significant differences
between scale ratings for arousal. (a) The forward/backward bending of the head (V5); (b)
The vertical distance of the hand from the shoulder (V7); (c) The frontal extension of the
hand from the shoulder (V8); (d) The vertical height of the hand in relation to the elbow
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Figure 4.32: Avatar examples representing typical postures for the significant differences of
V5, the forward backward bending of the head. (a)-(c) Representing ratings 1 and 2 are
postures 33, 63 and 94; (d)-(f) Representing rating 7 are postures 25, 44 and 96. Recall
from Section 4.6.2 that the numbers refer to the posture position in the bar charts located
in Appendix C for easy cross-referencing

Figure 4.33: Avatar examples representing typical postures for the significant differences of
V7, the vertical distance of the hand from the shoulder. (a)-(c) Representing ratings 1 to 4
are postures 52, 78 and 91; (d)-(f) Representing ratings 5 to 7 are postures 57, 85 and 106.
Recall from Section 4.6.2 that the numbers refer to the posture position in the bar charts
located in Appendix C for easy cross-referencing

4.34(a)-(c). For postures with ratings 5 to 7, the range of frontal extension of the hands is

between slightly in front to about halfway in front, e.g., the elbows bent and the hands in

front of the body. Examples are presented in (d)-(f) of Figure 4.34.

The last posture feature to examine for arousal is V17, the vertical distance of the hand

from the elbow (Figure 4.31(d)). For this feature, like most of the other arousal and valence

features examined, the lower ratings are significantly different from the higher ratings. In this

case, the significant differences occur between ratings 1 to 4 and ratings 5 to 7. According

to the boxplot, the hand height ranges from being lower than the elbow (ratings 1 to 3) to
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Figure 4.34: Avatar examples representing typical postures for the significant differences of
V8, the frontal extension of the hand from the shoulder. (a)-(c) Representing ratings 1 and
2 are postures 63, 77 and 90; (d)-(f) Representing ratings 5 to 7 are postures 21, 39 and 80.
Recall from Section 4.6.2 that the numbers refer to the posture position in the bar charts
located in Appendix C for easy cross-referencing

Figure 4.35: Avatar examples representing typical postures for the significant differences of
V17, the vertical distance of the hand from the shoulder. (a)-(c) Representing ratings 1 to
4 are postures 5, 90 and 91; (d)-(f) Representing ratings 5 to 7 are postures 2, 20 and 87.
Recall from Section 4.6.2 that the numbers refer to the posture position in the bar charts
located in Appendix C for easy cross-referencing

level with or slightly higher than elbow height (rating 4). Examples are shown in (a)-(c) of

Figure 4.35. This differs from ratings 5 to 7 in which the hand tends to be raised higher

than the elbow. This is especially true for rating 7 in which the hand height appears to be

the highest. Examples are shown in (d)-(f) of Figure 4.35.
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4.8 Automatic Recognition of Affective Dimensions from

Posture

Automatic recognition models were built and tested for valence and arousal dimensions

separately. Testing was conducted to assess the models’ ability to generalise to both new

observers and new postures. To build the automatic recognition models, each posture pi

was associated with the median as the ground truth rating gtm(pi, O) for each affective

dimension dg, and a vector of 24 low-level posture description features Fi = {fi1, ..., fi24}
listed in Table 4.4.

The topology of the MLP used in this study consists of three layers: one input, one

hidden and one output. The number of nodes in the input layer corresponds to the number

of features used. The number of nodes in the hidden layer corresponds to the number of

input nodes divided by two. The output layer contains one node. 10,000 epochs were used

to train the recognition models.

4.8.1 Generalising to New Observers

To test the ability to generalise to new observers, automatic models were trained with the

previously unused observer subset three Os,3 and tested with Os,1 for each of the 10 trials.

The results are summarised in Table 4.17. The average recognition rate across the 10 trials

for valence was 83.89% (SD = 1.96%) and for arousal was 86.92% (SD = 1.37%).

4.8.2 Generalising to New Postures

Automatic recognition models were also tested for their ability to generalise to novel pos-

tures. Each posture pi was associated with its corresponding feature vector F , and the

median rating was assigned as the ground truth gtm(pi, O). The models were built using an

MLP with 10 fold cross-validation. The percentage of recognition achieved for the valence

dimension was 79.29% (SD = 1.7%) and for the arousal dimension it was 80.35% (SD =

1.5%).
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Table 4.17: The performance rates for the automatic recognition models that generalise to
new observers for the valence and arousal dimensions.

Generalising to new observers

Affective dim. Trial Auto rec. Average SD

Valence

1 86.39%

83.89% 1.96%

2 82.77%
3 81.18%
4 81.97%
5 87.35%
6 83.31%
7 82.87%
8 84.38%
9 83.3 %
10 85.37%

Arousal

1 88.22%

86.92% 1.37%

2 89.25%
3 86.92%
4 85.04%
5 88.32%
6 86.33%
7 86.74%
8 87.19%
9 85.16%
10 86 %

4.8.3 Evaluation and Discussion

The goal of the affective dimension automatic recognition models for generalising to new

observers is to achieve recognition rates comparable to the benchmarks that were set by the

human observers. The results are illustrated in Figure 4.36. For both dimensions, while not

all of the automatic models’ recognition rates surpass the benchmark, they achieve a similar

percentage of recognition. Indeed, the average across the automatic recognition models of

all 10 trials for each dimension dg is slightly higher than the benchmark, indicating that

these models could replace a human interaction partner in this scenario.

In the models built for generalising to novel postures for each affective dimension dg, there

was little difference in performance between the two dimensions, with arousal performing

only slightly better than valence, similar to the observer generalisation results. A study by

Zeng et al [ZTP+05] which examined the automatic recognition of valence and arousal from
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(a) (b)

Figure 4.36: Observer generalisation results for (a) valence and (b) arousal, and the observer
benchmarks for each

a combination of acted facial expressions and vocal prosody also obtained slightly higher

recognition for arousal (87%) over valence (84%). Because arousal equates to activity, i.e.,

from calm to excited, it may be more obvious from bodily expressions, especially stereotyp-

ical, exaggerated acted expressions. As discussed and shown throughout this chapter, the

postures range from the appearance of very little movement, i.e., a closed body, to a lot of

implied movement. As the study presented in the next chapter examines non-acted bodily

expressions, it will be interesting to see if similar differences in the recognition of valence

and arousal are obtained.

4.9 Chapter Summary

This chapter presented experiments designed to investigate the recognition of basic emotion

categories and affective dimensions from acted body posture information. It was hypothe-

sised that human observers could achieve above chance agreement levels when attributing

basic emotions and levels of affective dimensions to static images of a faceless humanoid

avatar. It was also hypothesised that automatic recognition models could be grounded

on a set of low-level posture features and achieve recognition rates similar to benchmarks

computed based on the overall agreement levels of the human observers.

Posture data was collected using a Vicon motion capture system. Participants were
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recruited to enact four emotions through bodily expressions, angry, fear, happy and sad.

No constraints were placed on the actors in how they performed the affective postures. A

set of affectively expressive avatars was created from the original motion capture data. The

static postures chosen corresponded to the apex instants of the motions as identified by the

actors.

Next, a different group of participants, the observers, was asked to judge static posture

images according to two nuances of the four different basic emotion categories, angry (angry,

upset), fear (fear, surprise), happy (happy, joy) and sad (sad, depressed), and levels of four

affective dimensions, (valence, arousal, potency and avoidance) to each posture pi.

To analyse human agreement rates, within observers agreement and inter-observer agree-

ment reliability were ascertained for the observers’ judgments first. As hypothesised, the

within observers agreement levels W.AgrLabel(L,O) were well above chance level for the

set of emotion labels L. For the affective dimensions, an overview of the survey data and

the Cronbach’s α scores computed within observers indicated good consistency between ob-

servers’ judgments for the valence and arousal dimensions but little consistency between

observers’ judgments for the for the potency and avoidance dimensions. Based on these

results, these two dimensions were eliminated from further analysis. Next, a set of bench-

marks was defined from the observers’ judgments by computing the average of the between

observers agreements B.AgrLabel(Os,1, Os,2) for the set of affective labels L and the between

observers agreements B.Agr(dg, Os,1, Os,2) for the valence and arousal dimensions.

The next section explained the low-level information used to describe the postural dis-

plays after which an anlysis of the low-level posture description was carried out to assess how

disciminative each feature fiw was for distinguishing between affective states and affective

dimensions. The results for the basic emotions showed significant differences between most

of the low-level posture features for each of the observer groups OJA, OSL, OUS and that

specific low-level features could be used for distinguishing between emotions as reflected

in associated avatar examples. The ANOVA results for the affective dimensions also re-

vealed significant differences for many of the low-level features with many of the differences
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occurring between the higher ratings (i.e., 5 to 7) against the other ratings.

In the second half of the analysis for both the affective state labels and the affective

dimensions, automatic recognition models were built and tested to determine if performance

rates similar to the benchmarks could be obtained (observer generalisation) using repeated

sub-sampling validation. For both the emotion categories and the affective dimensions, the

recognition rates for many of the observer generalisation trials outperformed the benchmarks

set by the human observers. Indeed, the average across the emotion category models and

the affective dimension models did in fact slightly outperform the benchmarks.

Automatic recognition models were also tested for their ability to generalise to novel

postures (using 10 fold cross-validation). In the case of the emotion labels, the models

performed slightly worse than the observer generalisation emotion recognition models. The

results were attributed to the misclassification of fear postures as either angry or happy.

Similar to the observer generalisation affective dimension recognition models, a slightly

higher recognition rate was obtained for the arousal model than for the valence model. It

was conjectured that arousal may be more easily identifiable from acted bodily expressions

than valence as arousal denotes activity. The discussions throughout this chapter have

remarked that there appear to be differences between the more activated types of emotion

represented through posture and the less activated types of emotion.

The results of this study have shown that acted bodily expressions can be recognised at

above chance levels by human observers and that automatic recognition models can achieve

performance rates similar to benchmarks computed on the human observers’ agreement

levels. Presented in the following chapter, the second step in the incremental approach is

to examine the recognition of more subtle affective states and affective dimensions from

non-acted postures in a natural situation (i.e., a video game scenario).



Chapter 5

Case Study 2: Modelling

Non-Acted Affect in a Video

Game Scenario

The goal of the non-acted postures study is to assess whether non-basic affective states and

levels of affective dimensions can be recognised from non-acted displays of body posture.

As with the acted postures study, this goal is evaluated in two directions, through human

observer recognition and automatic model recognition. In the acted postures study, it was

seen that stereotypical postures, purposely performed to express basic emotion categories

could be recognised at above chance levels by humans and that automatic recognition models

outperform the benchmarks computed. However, in most daily situations, these exaggerated

affective displays do not occur and the prototypic emotions are much more infrequent [RC03].

An examination of non-acted postures in which non-basic emotions and affective dimensions

are depicted is a natural next step in affective computing research [LNP02]. Hence, it is

necessary to test whether the hypothesis holds in a natural situation. To this end, a video

game context was chosen. The video game players interact with and control the game using

165
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a controller geared to elicit whole body movements of the player. The players are completely

unaware of the true nature of the study in an aim to ensure naturally expressed affect.

Several steps were involved in carrying out this study and are reflected in the organi-

sation of this chapter. First, in Section 5.1, posture corpora were collected using motion

capture from which postures were manually extracted for use in both human and automatic

recognition of affect. Section 5.2, 5.4 and 5.5 explain the human observer recognition of

affective state categories and the benchmark set from the results. Section 5.3 describes

the low-level description of posture. Similar to Chapter 4, the second half of this chapter

reports on the recognition of levels of affective dimensions from non-acted posture in the

same section layout as the affective state recognition. The chapter ends with a summary in

Section 5.9.

5.1 Posture Corpora

5.1.1 Motion capture data collection

The first step in assessing if non-basic affective states and affective dimensions can be recog-

nised from non-acted postures is to obtain postural data. As described in Section 3.1 of

Chapter 3, the Gypsy 5 motion capture system [Ani07] was used in this study to numeri-

cally record the body motions of players during video game play.

The players were given an information sheet to read and a consent form to sign if they

chose to proceed with the experiment. After signing the consent form, two photos were taken

of each player in order to create the configuration model specific to that person. The photos

were taken while the player was standing inside a wireframe cube which helps define the

volume of space around the body. Refer to Figure 5.1 for an example. One front-facing photo

and one right-facing photo were used. The photos were loaded into the AutoCal software

(which comes with the Gypsy suite of software). Marker points first were positioned over

the corners of the cube to define the space. Next, a set of marker points labelled according

to specific body joints and areas of the body were positioned on the images of the player,
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Figure 5.1: An example of how the configuration model is created. Permission to publish
the photo has been granted.

thus creating a player-specific model. When finished, the player was fitted with the Gypsy

suit and asked to remain still facing north for the calibration process. Motion capture began

when the player started to play a sports game with the Nintendo WiiTM.

5.1.2 Players

Eleven players, six females and five males, ranging in age from 20 to 30, were recruited

for participation. The players were asked to play sports games with the Wii for up to 30

minutes and have their body motions recorded while wearing the Gypsy 5 motion capture

suit. The players were free to choose between tennis, bowling, baseball and golf and could

switch games at any time during play. To add a human-human interaction element to the

scenario, I communicated with the players throughout the gaming session. It was believed

that this interaction would help create a more comfortable and natural atmosphere for the

players.
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5.1.3 Stimulus identification

After collecting the motion capture data, the apex instants of the motion capture files were

manually located. Due to the nature of the non-acted study, a player-defined apex instant

does not exist nor was there a definitive static posture for many of the motions. Thus,

sections of each motion capture file in which affect was displayed needed to be located first.

The non-game play windows are defined as replay windows because they are the points

during the gaming session in which the player views a replay of the point that was just

played. While the player may have been experiencing affective states throughout the entire

motion capture session, it is only the replay windows that are considered relevant in this

research project. The reasoning is that the different types of actions (i.e., game play versus

non-game play) may require different training and testing sets as the actions involved in

actual game play have an effect on how affect is expressed.

Three university students were recruited as novice coders. They were asked to locate

the start and end frames of the replay windows which they felt contained affective bodily

expressions. The coders also provided potential affective state labels for these sections to

obtain a list of possible affective states to be used in the forced-choice posture judgment

survey described in the next section. The prospective labels are listed in Table 5.1. The

labels are grouped according to the affective state that was ultimately chosen for the survey,

partially determined from an article by Lazzaro [Laz04] which describes some of the typical

affective states associated with general game play.

Table 5.1: The affective and cognitive state labels identified by the coders. The labels are
grouped according to the label used in the study.

Concentrating Defeated Frustrated Triumphant
Determined Bored Angry Confident
Focused Defeated Frustrated Excited
Interested Give up/Sad Frustrated/Angry Excited/Motivated

Sad Happy/Excited
Tired Happy

Victory
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The motion capture files were viewed through the graphical visualisation software Co-

braView, part of the Gypsy motion capture suite of software. After the coders annotated the

replay windows, I viewed the annotated replay windows of each file and chose what appeared

to be the apex instant of the motion contained within that window. The apex instant of

each affective display was selected as a single static posture stimulus. Static postures were

chosen from 12 motion capture files with |P | = 103. Posture examples are shown in Figure

3.4(b).

5.2 Human Recognition of Non-Basic Affect from Pos-

ture

The goal of this section is to examine the extent to which human observers can recognise

non-basic affective states from static images of non-acted whole body postures. As previ-

ously stated, as of yet there are no recognised benchmarks for evaluating human recognition

rates, thus chance level is considered the target, as it is the current metric used in affec-

tive computing. A benchmark computed on the observers’ agreements will be used as the

benchmark for evaluating the performance of the automatic recognition models discussed in

Section 5.4.

5.2.1 Survey Procedure

To create the stimuli for the human recognition of affect, the motion capture files were

viewed in CobraView. A static image was rendered for each apex posture pi. An online

survey was conducted using the avatar stimuli. The aim was to obtain judgments on the

set of affective postures P to associate ground truth affective state labels gtl(pi, O) to each

posture pi.

A forced-choice experimental design was used. A set of affective labels was defined as

L = {concentrating, defeated, frustrated, triumphant}. The observers were asked to view

the set of postures P and associate a possible affective state label lj in L to each posture pi
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in P . The posture judgment survey itself was carried out using two classification methods:

an online task as a series of webpages and a card sorting task [RM97]. These two different

methods were used in an attempt to reduce potential boredom experienced by the observers.

The tasks were performed on the entire set of postures P . For the online posture judgment

survey, the stimuli were presented in a randomised order, one posture per webpage. An

example webpage can be seen in Figure 5.2.

Figure 5.2: An example of the posture judgment survey for the non-acted, non-basic affective
states study.

For the card sorting task, the posture images were printed in gray scale, one per card (5.5

cm x 6.5 cm), and given to the observers in a random order. The observers were asked to

categorise the postures according to the set of affective states L. No other constraints were

placed on the observers and they were allowed to take as much time as they felt necessary

to classify the postures.
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Observers

The posture judgment survey was completed by a set of 8 observers: five males and three

females between the ages of 23 and 31. Each observer made five evaluations (8 observers x

5 evaluations = 40 evaluations) on the entire set of postures P : one online evaluation and

four card sorting evaluations. At least 12 hours elapsed between evaluations. The rationale

for collecting multiple evaluations from a small set of observers was that it may help to

eliminate differences in how individuals interpret an affective label. According to a study by

Picard and colleagues [PVH01], multiple judgments collected from a single observer may be

more consistent because individuals may have different definitions for, or ways of interpreting

affective states. This may be especially true for more subtle, non-basic affective states which

may be subject to even greater variation in interpretation. In the remainder of the affective

categories study in this chapter, O is defined as a set containing 40 observation evaluations,

i.e., |O| = 40.

5.2.2 Overview of the Survey Data

To gain a general overview of the survey data, the most frequent label across the 40 evalu-

ations was taken as the ground truth label gtl(pi, O) for each pi. As a result, 60 postures

were labelled as concentrating, 22 as defeated, 5 as frustrated and 16 as triumphant.

The within observers agreement W.Agr(L,O) across the set of labels L (as defined in

Equation (3.3)), and the within observers agreement W.Agr(lj , O) for each affective label

lj (as defined in Equation (3.2)), is listed in Table 5.2 and represented in the pie charts

illustrated in Figure 5.3. Similar to the agreement graphs shown in Chapter 4, Section 4.2,

each pie chart represents the frequency of use freq(pi, lj) for each affective state label lj

for each posture pi. The pie charts (i.e., postures) are organised according to ground truth

label gtl(pi, O). In order to easily locate individual postures, the rows have been labelled

with letters and the columns have been labelled with numbers.

The within observers agreement W.Agr(lj , O) for each affective label lj , is above chance
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Table 5.2: An overview of the agreement between the set of observers O to classify the set
of postures P . The first column lists the W.Agr(L,O) across the set of labels L and the
remaining four columns list the W.Agr(lj , O) for each affective label lj . The number of
postures per affective state lj is noted in parentheses.

W.Agr(L, O) ∗ 100 W.Agr(lj , O) ∗ 100
Concentrating Defeated Frustrated Triumphant

58% 57% (60) 64% (22) 39% (5) 61% (16)

Figure 5.3: Each pie chart indicates the frequency of use freq(pi, lj) for each emotion label
lj : j = 1, ..., 4 in L for each posture pi in P according to O. The column numbers and the
row letters allow specific postures to be easily identified and located when referenced in the
text or in other Figures
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level of 25% (considering four affective state categories). The concentrating category contains

considerably more postures (60) than the other categories. One possible reason for this

outcome could be due to some of the postures not fitting into the affective labels available.

At the end of the classification task, some of the observers informally reported that they

often used this category when they felt that the posture being evaluated did not fit into any

of the other categories (i.e., concentrating seems to have been interpreted as neutral).

(a) C4 (b) A2 (c) A4

(d) G5 (e) I6 (f) F2

Figure 5.4: (a)-(c) the 3 postures with the highest percentage of agreement for concentrating;
(d)-(f) the 3 postures with the lowest percentage of agreement for concentrating. The
letter/number pairs refer to the location of the postures in Figure 5.3

The postures that achieved the highest frequency of use for concentrating within the

concentrating postures, shown in Figure 5.4(a)-(c), were C4 (90%), A2 (87.5%) and A4

(77.5%). Evaluating the postures visually from the 2D image, the ‘typical’ concentrating

postures all exhibit legs crossed at the heels, arms bent at the elbows with hands in front
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of the body held around waist and torso height, and the head straight, i.e., no bending or

tilting. The postures with the lowest frequency of use for concentrating, shown in Figure

5.4(d)-(f), are G5 (32.5%), I6 (37.5%) and F2 (40%). These postures all have tilted heads,

one arm relaxed down along the body and the other arm raised to around torso height with

the hand extended.

(a) C9 (b) B11 (c) C8

Figure 5.5: (a)-(c) the 3 postures with the highest frequency of use for defeated. The
letter/number pairs refer to the location of the postures in Figure 5.3

The defeated category contains 22 postures. Within this category, there is almost no

disagreement for triumphant. Instead, disagreement occurs with concentrating, the other

less activated type of affective state. The postures with the highest frequency of use for

defeated were C9 (90%), B11 (87.5%) and C8 (82.5%), shown in (a)-(c) of Figure 5.5,

respectively. All three of these postures have heads tilted to the side and the arms extended

down along the body. C8, the posture with the third highest, is the most different from the

other two high frequency defeated postures with the feet more than shoulder width apart

and the torso tilted sideways slightly.

Frustrated is the category with the most disagreement in labelling. Only five postures

obtained frustrated as the ground truth label gtl(pi, O). The frustrated postures can be seen

in Figure 5.6(a)-(e), ordered from highest to lowest frequency of use. The configuration of the

frustrated postures appears to be quite different from the postures in the other categories.

Most noticeable is that they appear more animated than the concentrating or defeated
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(a) F7 (50%) (b) F8 (40%) (c) F9 (35%)

(d) F10 (35%) (e) F11 (35%)

Figure 5.6: The 5 frustrated postures. The letter/number pairs refer to the location of the
postures in Figure 5.3

postures. For all five postures, at least one arm is bent at the elbow and raised frontally or

laterally. The feet range from close together to more than shoulder width apart.

Sixteen postures were assigned triumphant as the label lj with the highest frequency

of use freq(pi, O). The triumphant postures with the highest frequency of use, I10 (85%),

I8 (82.5%) and J9 (82.5%), are shown in Figure 5.7(a)-(c). The postures with the lowest

frequency of use for triumphant, I7 (32.5%), H8 (40%) and J7 (40%), are shown in Figure

5.7(d)-(f). I10 and I8 both have the arms raised to around shoulder height and extended

laterally and/or frontally - appearing very animated. J9 appears less animated with the

arms extended slightly laterally, bent at the elbows and the hands raised frontally to around

shoulder height. J9 is similar to the low frequency of use triumphant posture, H8, except

that the arms are not laterally extended, but instead the elbows remain close to the body.
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(a) I10 (b) I8 (c) J9

(d) I7 (e) H8 (f) J7

Figure 5.7: (a)-(c) the 3 postures with the highest frequency of use for triumphant; (d)-(f)
the 3 postures with the lowest frequency of use for triumphant. The letter/number pairs
refer to the location of the postures in Figure 5.3

In the other two low frequency triumphant postures, I7 and J7, the hands are at waist

height, with a slight bend in the elbows. Disagreement within the triumphant category

occurs mainly with frustrated, the other activated affective state, and with concentrating

for a smaller number of postures.

5.2.3 Creating Benchmarks

To create benchmarks for the human recognition of affective states from posture, the first

step was to assess observer agreement reliability. Fleiss’ kappa, computed for O, achieved

0.391, equating to the upper end of the range for ‘fair’ agreement. The second step was to

create the benchmarks that will be used to evaluate the performance rates of the automatic
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recognition models discussed in the second half of this chapter.

Table 5.3: The B.AgrLabel(Os,1, Os,2) and the inter-observer agreement reliability (i.e.,
Cohen’s kappa) between Os,1 and Os,2.

Inter-observer agreement reliability

Trial B.AgrLabel(Os,1, Os,2) ∗ 100 Kappa 95% CI Strength Benchmark

1 62.14% 0.436 0.313, 0.559 Moderate

66.70%

2 52.43% 0.295 0.158, 0.432 Fair
3 70.87% 0.542 0.411, 0.673 Moderate
4 69.90% 0.523 0.392, 0.654 Moderate
5 76.70% 0.623 0.498, 0.748 Substantial
6 76.70% 0.600 0.471, 0.729 Moderate
7 63.11% 0.462 0.339, 0.585 Moderate
8 59.22% 0.372 0.233, 0.511 Fair
9 67% 0.470 0.329, 0.611 Moderate
10 68.93% 0.497 0.362, 0.632 Moderate

Inter-observer agreement reliability was measured to test the consistency between subsets

of observers. Ten trials (i.e., s = 1, ..., 10) were created using the random repeated sub-

sampling procedure described in Chapter 3. Each trial comprised three disjoint subsets

Os,1, Os,2 and Os,3. Os,1 and Os,2 contained 15 evaluations (by three different observers)

and Os3 contained 10 evaluations (by two different observers). For each trial, the between

observers agreement B.AgrLabel(Os,1, Os,2) was computed between Os,1 and Os,2. Os3 will

be used in the second half of this chapter to train automatic recognition models of non-basic

affective states. The results are listed in Table 5.3. Each row constitutes a trial and lists

the B.AgrLabel(Os,1, Os,2), Cohen’s kappa, the 95% confidence interval and the strength

of agreement [LK77]. The strength of agreement is mostly ‘moderate’ across the 10 trials,

which can be taken to mean good agreement beyond chance [BCMS99]. This is what was

expected, given that low inter-observer agreement reliabilities are an acknowledged outcome

of employing naturalistic data [CDCC05][ADBM05] as cited in [AR09]. The benchmark

obtained is 66.70% (SD = 7.64%) and is listed in the last column of the Table. Recall

from Chapter 3 that the benchmark is calculated as the average agreement across the 10

trials. Similar to the within observers agreement W.AgrLabel(lj , O) on each label lj and

the overview of the survey discussed in Section 5.2.2, the lowest agreement levels occurred
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for frustrated postures across the 10 trials as was expected.

5.2.4 Discussion

Examining the results of the overview of the data, the W.AgrLabel(lj , O) for each label

lj : j = 1, ..., 4 was above chance level, thus outperforming the target rate. The highest

agreement levels were seen for defeated and triumphant. It is possible to conjecture that

they are the two most strongly opposite affective states being studied. Also, defeated could

be considered part of the sad emotion family and triumphant part of the happy emotion

family. Taking this view, the results are similar to the Chapter 4 within observers agreement

W.AgrLabel(sad,O) which obtained the highest agreement of the four emotion categories.

In Coulson’s study [Cou04], for the frontal view postures, sad and happy were attributed to

the highest number of postures where observer concordance rates between 50% to 80%. In

Kapur et al.’s study [KKVB+05], sad and joy also obtained the highest levels of observer

agreement at 95% and 99% respectively.

W.AgrLabel(frustrated,O) was the lowest of the four categories. However, only five

postures obtained a ground truth label gtl(pi, O) of frustrated. This result may signify

several things. First, that dynamic information, such as direction and force of movement,

may be necessary for identifying frustrated, similar to Coulson’s research [Cou04] on fear. For

instance, there may be similarities in static representations of frustrated and triumphant and

knowing the direction may solve these ambiguities as triumphant movements may contain

more upward movement and frustrated could contain more forceful downward or repetitive

movements. A similar situation between happy and angry acted postures was resolved with

the addition of dynamic features in a study by the candidate [KFBB05], not included in this

thesis.

Second, that the video game situation considered did not elicit a frustrating type of

experience. However, as described in the ‘Survey Procedure’ section, as the experimenter,

I remained in the room, interacting with the players, and detected frustration in several

players through vocal content. Thus, it may be that posture alone is not enough to discern
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frustration and the addition of another modality (such as voice) is required. For instance,

high levels of human-human agreement (72%) were obtained for detecting a combination of

annoyance and frustration from speech utterances [ADK+02].

5.3 Low-Level Posture Description

As explained in Chapter 3, each posture pi corresponds to a single frame of motion capture

data. This data is used to build the low-level description of the configuration of posture from

the Gypsy motion capture data. Each extracted frame of motion capture data, comprising

3D positions of the body was considered to be the set of low-level posture configuration

features Fi = {fi1, ..., fi41}. Refer to Figure 5.8 to see a map of the posture configuration

features (rotations) at the initialisation (i.e., neutral) pose, defined by the potentiometer

placement and the additional features determined from the player configuration model.

The potentiometer information is transformed into Euler coordinates automatically at

the time of recording. Although not kinematically possible, the range of movement for

each feature is from between 0 and 360 degrees, positive and negative, with 0 as the neutral

position (i.e., no movement occurred). To adjust for plausible human movement, the possible

(human) range of movement for each feature was assessed and then normalised to [0,1]. Table

5.4 lists the low-level posture configuration features computed by the motion capture system

and the ranges considered for normalisation.

For some of the joints, the range of one direction of the movement, e.g., the forward

movement, was greater than the range for the opposite direction of the movement, e.g., the

backward movement. Therefore, each portion of the range of movement (e.g., [30,0] = range

of backward movement of the hip and (0,-55] = range of forward movement of the hip) was

transformed independently to ensure that 0 remained the neutral position. To do this, each

original value viw is transformed according to the following rule
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Figure 5.8: The potentiometer map and the additional features determined from the player
configuration model at the initialisation pose. The data recorded comprises the set of low-
level posture configuration features in the non-acted postures study

If viw < 0

fiw =
1
2
∗ viw − biw

eiw − biw
(5.1)

If viw > 0

fiw =
1
2
∗ viw − biw

eiw − biw
+ 0.5 (5.2)

where fiw is the normalised value of the feature, viw is the original value from the motion

capture data, biw is the start of the range, and eiw is the end of the range. In this way, 0.5

corresponds to a neutral position. The two ranges are weighted differently somewhat on the
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Table 5.4: The set of low-level posture configuration features used in the non-acted postures
study and the ranges of each for normalisation

Low level posture features and normalisation ranges
Features Z X Y

Begin to End Begin to End Begin to End
Left hip 22 to -22 30 to -55 20 to -20
Left knee – 55 to -9 –
Left collar 4 to -4 6 to -3 4 to -4
Left shoulder 170 to -40 45 to -110 90 to -50
Left elbow 8 to -135 8 to -55 1 to -90
Left wrist 55 to -55 45 to -40 90 to -90
Right hip -22 to 22 30 to -55 -20 to 20
Right knee – 55 to -9 –
Right collar -4 to 4 6 to -3 -4 to 4
Right shoulder -170 to 40 45 to -110 -90 to 50
Right elbow -8 to 135 8 to -55 -1 to 90
Right wrist -55 to 55 45 to -40 -90 to 90
Torso 35 to -35 -15 to 55 -26 to 26
Neck -15 to 15 -18 to 18 -22 to 22
Head -50 to 50 -65 to 65 -55 to 55

basis of the effort and feasibility of performing that particular movement.

For non-directional rotation, a further transformation was applied. The z and y rotations

of the head, neck and torso features were considered non-directional, meaning that the head,

for example, turned to the left was the same as the head turned to the right. This was

accomplished with the following decision rule

if(fiw ≥ 0.5), then fiw = 2(1− fiw), else fiw = 2fiw (5.3)

5.4 Low-Level Posture Description Analysis

To evaluate the discriminative power of the set of low-level posture configuration features

Fi for distinguishing between the affective states examined, each feature fiw was subjected
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to a one-way ANOVA with Tamhane’s T2 post hoc comparisons implemented for unequal

variances. Each posture pi was associated with the ground truth label gtl(pi, O) defined

according to the set of observers O and a vector of the low-level posture features Fi. The

results are summarised in Table 5.5. The first column lists the features shown to be impor-

tant for discriminating between affective states and the significance level is listed in the last

column. The means for each affective state label lj are listed in the middle four columns.

The superscript letter pairs associated with the means signify the significant differences

between those affective state label pairs according to the post hoc comparisons. Boxplots

depict some of the most interesting results.

Table 5.5: The low-level posture description features which reached significance between
the affective states (one-way ANOVA with df = 3 (emotions)). For each feature fw, a-e
pairs indicate the significant differences between means according to Tamhane’s T2 post-hoc
comparisons Rot. = rotation, L. = left, R. = right

Means for affective states
Low-level feature Concentrating Defeated Frustrated Triumphant p
x rot. torso .53a .63abc .44b .48c .003
x rot. L. collar .45ab .36acd .52bc .49d .001
y rot. L. collar .53 .51 .41 .46 .039
x rot. R. collar .45ab .36acd .52bc .49d .001
y rot. R. collar .47ab .49acd .59bc .54d .039
z rot. L. shoulder .53ab .58cd .48ac .44bc .000
y rot. L. shoulder .55a .65b .44 .34ab .000
y rot. R. shoulder .50a .61b .34 .32ab .000
z rot. L. elbow .66a .54ab .66 .73b .003
x rot. L. elbow .75a .62ab .83 .84b .011
y rot. L. elbow .64a .52ab .62 .72b .001
z rot. R. elbow .57a .50b .66 .75ab .000
x rot. R. elbow .67a .55b .77 .86ab .001
y rot. R. elbow .13ab .03ac .28 .46bc .000
x rot. L. wrist .58 .47a .59 .68a .004
x rot. R. wrist .49 .48 .52 .63 .005
z rot. neck .77 .65 .84 .71 .017

Even though a standing scenario was chosen, it is interesting to note that the important

low-level posture description features are mainly the arms and upper body. This could

indicate that the majority of the movement really is upper body for the type of scenario
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used. Looking more closely at the results, it can be seen that significant differences occurred

for the x rotation of the torso (the degree of forward or backward bending of the body)

between the more ‘active’ affective states (frustrated and triumphant) and the less ‘active’

states (concentrating and defeated). This difference is evident in boxplot (a) depicted in

Figure 5.9. Looking at the avatars in Figure 5.10, it can be seen that the body is slightly

bent forward in the concentrating and defeated postures, whereas the body remains upright

in the frustrated and triumphant postures.

Figure 5.9: Examples of the low-level posture description features with significant differences
between affective state labels (a) the x rotation of the torso; (b) the x rotation of the collar;
(c) the z rotation of the shoulder; (d) the y rotation of the shoulder
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Figure 5.10: Avatar examples demonstrating the x rotation of the torso differences between
the affective states.

In the case of the x rotation of the collar (the degree of forward slumping or backward

straightening of the collar) significant differences occurred between concentrating and de-

feated against frustrated, and defeated against triumphant. The boxplot in Figure 5.9(b)

and the avatars in Figure 5.11 illustrate these differences. The concentrating and defeated

avatars in Figure 5.11(a) have shoulders that are slumped forward more than the frustrated

and triumphant avatars in Figure 5.11(b).

Significant differences were also obtained for the z and y rotations of the shoulders,

shown in boxplots (c) and (d) of Figure 5.9. For the z rotation of the shoulder (the lateral
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Figure 5.11: Avatar examples demonstrating the differences of (a) concentrating and de-
feated against (b) frustrated and triumphant for the x rotation of the collar

and vertical extension of the arm at the shoulder), the significant differences occurred with

concentrating and defeated against frustrated and triumphant. The arms are raised and

extended laterally, i.e., open (refer to the avatar examples in Figure 5.12(b)). This differs

from the concentrating and defeated postures in which the arms are closed, i.e., extended

slightly diagonally across the body (refer to the avatar examples in Figure 5.12(a)).

For the y rotation of the shoulder (the rolling of the shoulder causing a lateral to and

from frontal movement), the significant differences occurred with concentrating and defeated

against triumphant. Similar to the z rotation of the shoulders, for the y rotation, much more

‘movement’ is implied in the triumphant postures with the shoulders squared back and open

(refer to the avatar examples in Figure 5.13(c)), whereas the arms are much more closed

for the concentrating and defeated postures; the shoulders are rounded inward (refer to the

avatar examples in Figure 5.13(a) and (b)).



186

Figure 5.12: Avatar examples demonstrating the differences for (a) concentrating and de-
feated against (b) frustrated and triumphant for the z rotation of the shoulders

5.5 Automatic Recognition of Non-Basic Affect from

Posture

The next task was to build and evaluate automatic recognition models of the subtle affective

states from posture. As described in Chapter 3, Section 3.3.2, recognition models were

evaluated for their ability to generalise to: i) new observers and ii) new postures. The input

for creating the models was the vector of low-level posture features, F = {f1, ..., f41} and a

non-basic affective state label gtl(pi, O), for each static posture pi.

The topology of the MLP used in this chapter consists of three layers: one input, one
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Figure 5.13: Avatar examples demonstrating the differences for (a) concentrating and (b)
defeated against (c) triumphant for the y rotation of the shoulders

hidden and one output. The number of nodes in the input layer corresponds to the number

of features used. The number of nodes in the hidden layer corresponds to the number of

input nodes divided by two. The output layer contains four nodes, one node corresponding

to each affective state label. 10,000 epochs were used to trained the recognition models.

5.5.1 Generalising to New Observers

To test the automatic recognition models’ ability to generalise to new observers, Os,3 for

each of the 10 trials defined in Section 5.2 was used to build and train the recognition

models. Each model was tested with the corresponding Os,1. The results are summarised

in Table 5.6. The average recognition across the 10 trials was 59.22% (SD = 11.8%). The
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Table 5.6: The automatic recognition model testing and evaluation results for generalising
to new observers.

Generalising to new observers

Trial Sys tot Concentrating Defeated Frustrated Triumphant
1 48.54% 43.2% 58.1% 40% 48%
2 48.54% 61.9% 50% 25% 37.9%
3 62.14% 67.2% 93.8% 0% 76.9%
4 70.87% 80.7% 75% 20% 52.4%
5 45.63% 39.2% 51.5% 0% 62.5%
6 42.71% 37.1% 45% 25% 76.9%
7 75.73% 83.9% 50% 50% 92.3%
8 67.96% 83.6% 78.6% 0% 65%
9 66.99% 77.6% 63.2% .09% 73.3%
10 63.11% 78.8% 53.3% 0% 61.5%

Avg 59.22% 65.32% 61.85% 16.01% 64.67%
SD 11.8% 18.95% 15.76% 18.82% 15.98%

automatic recognition performances for concentrating, defeated and triumphant are not very

different from the set benchmark (66.7%). Instead, the performances on frustrated are very

low, similar to results obtained by Zeng et al [ZTL+04] for bimodal prosody and facial

expression recognition. This was to be expected given the very small data set available

and the low level of agreement among the observers. Hence, the frustrated postures were

removed due to lack of training set and a new set of automatic recognition models was built.

Figure 5.14 illustrates the differences between the average recognition performances with

and without the frustrated postures and the benchmark. Excluding the performances on

frustrated, the average recognition across the 10 trials increases to 69.89% (SD = 9.87%).

Evaluation and Discussion

The goal of the observer generalisation models was to achieve classification rates equivalent to

the human observer benchmarks. Has the goal been achieved? In automatic facial expression

recognition research, it has been acknowledged that recognising basic emotions is easier than

recognising non-basic affective states [eKR04]. However, the automatic recognition models

presented in this testing achieved performance rates comparable to the bodily expression
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Figure 5.14: Observer generalisation across the 10 trials compared with the benchmark. The
average values for each trial have been computed with and without the recognition rate for
frustrated

recognition systems presented in Table 2.10, such as Bernhardt and Robinson [BR07] and

Kapur et al [KKVB+05], which recognised acted, basic emotion categories and relied on an

actor-defined ground truth.

In examining specific misclassifications by the automatic recognition model that includes

frustrated, it was found that one posture was misclassified in every trial. This posture (F11

according to Figure 5.3) was predicted as frustrated by the recognition model in four trials

but the ground truth label gtl(pi, O) was triumphant. In four other trials, the opposite

misclassification occurred. Comparing the automatic recognition results with the human

observer agreement results, posture F11 was ground truth labelled as frustrated (35%) but

triumphant and concentrating frequencies were close behind at 25%. These results high-

light the confusion that occurred for the observers in distinguishing between frustrated and

triumphant.

Without reliable agreement levels by humans in recognising frustrated from body posture,
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it is difficult to test a recognition model’s performance for frustrated. It was suggested in the

discussion on human observer agreement (Section 5.2.4) that the integration of information

from other modalities such as voice might be necessary. Indeed, a face and prosody bi-

modal recognition system achieved a recognition rate of 83.56% for frustration [SCGH06],

and D’Mello et al [DCSG06] found that frustration was recognised with high precision levels

from dialogue sessions with an intelligent tutoring system.

5.5.2 Generalising to New Postures

Automatic recognition models were also tested for their ability to generalise to novel postures

as outlined in Chapter 3 and shown in Figure 3.8. To do so, each posture pi was associated

with a ground truth label gtl(pi, O) assigned by the set of observers O and the low-level

posture feature vector F . An automatic recognition model was built and tested using the

MLP with 10 fold cross-validation. The model achieved a recognition rate of 59.22%. The

model’s performance on each affective state label lj : j = 1, ..., 4 is listed in the first row

of Table 5.7 and illustrated in the ROC curves in Figure 5.15. Again, due to the lack

of sufficient frustrated labelled postures, the recognition model is unable to classify these

postures.

Similar to the observer generalisation described in Section 5.5.1, the five frustrated pos-

tures were removed and a new recognition model was built. This model achieved an increased

recognition rate of 66.33%. The recognition rate for each affective state label is listed in the

second row of Table 5.7.

Table 5.7: The recognition model results for generalising to novel postures. The total
recognition rate is listed in the first column and the recognition rates for each affective state
label lj are listed in the remaining columns.

Generalising to new postures
Rec. model Total Concentr. Defeated Frustrated Triumphant
Includes frustrated 59.22% 66.7% 59.1% 0% 50%
Excludes frustrated 66.33% 70% 59.1% – 62.5%
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(a) Concentrating (b) Defeated

(c) Frustrated (d) Triumphant

Figure 5.15: The ROC curves for the four affective state labels for the automatic recognition
model built for generalising to novel postures. AUC = area under the curve; CI = 95%
confidence interval. (a) Concentrating; (b) Defeated; (c) Frustrated; (d) Triumphant

Evaluation and Discussion

The confusion matrices for each recognition model are shown in Table 5.8 (includes frus-

trated) and Table 5.9 (excludes frustrated). As can be seen in both matrices, the majority

of the concentrating postures were correctly classified. This is not surprising given that

the concentrating category contained the highest number of postures. In both recognition

models however, some concentrating postures were misclassified as defeated and some as

triumphant. Again, these results may be attributed to the set of observers O classifying
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Table 5.8: The confusion matrix for generalising to novel postures (includes frustrated)

Concentrating Defeated Frustrated Triumphant ← classified
40 14 1 5 Concentrating
9 13 0 0 Defeated
2 0 0 3 Frustrated
6 0 2 8 Triumphant

Table 5.9: The confusion matrix for generalising to novel postures (excludes frustrated)

Concentrating Defeated Triumphant ← classified
42 11 7 Concentrating
9 13 0 Defeated
5 1 10 Triumphant

postures as concentrating when they felt none of the other categories were appropriate.

Thus, the concentrating category acted as a type of neutral. The results are similar to the

labelling results of Ang et al [ADK+02] in which the task was to classify subtle, naturally

occurring speech utterances into non-basic affective states (such as annoyance, tired etc.).

However, the majority of the utterances were classified as neutral.

An examination of the misclassification results for the model that included the frustrated

postures reveals that triumphant postures were misclassified as frustrated and frustrated

postures were misclassified as triumphant. Even though it has already been established

that there were not enough frustrated postures for the automatic model to clearly define its

classification rules for this affective state, the results add some further verification that frus-

trated and triumphant may share similar static posture features. Indeed, referring back to

the boxplots presented in Figure 5.9, it can be seen that the feature ranges for the frustrated

postures are more condensed than, but included in the feature ranges for triumphant. This

indicates that the triumphant postures may be more animated (i.e., bigger amplitude) than

the frustrated postures, but that the configurations are in fact similar.
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5.6 Human Recognition of Affective Dimensions

Human recognition of levels of affective dimensions of non-acted whole body postures were

tested using the same process that was used for human recognition of affective states as

reported in the first half of this chapter. The remainder of this case study describes the

investigation on the recognition of affective dimensions from non-acted postures.

5.6.1 Survey Procedure and Observers

Similar to the affective state posture judgment survey described in the first half of this

chapter, an online survey was conducted to obtain judgments on the non-acted affective

postures to determine levels of affective dimensions. The set of 103 posture images used

for the affective state judgment survey was reduced by removing several of the very similar

looking postures. The result was a set of 94 postures. This was done because of the

time required to judge the postures on the four affective dimension scales. The feedback

received by two observers that acted as pilot participants was that the survey, conducted as

one session, took too long and their interest level in completing the task had significantly

waned by the end. To remedy this problem, the final survey was split into three sessions.

The recruited observers were asked to complete one session. They were able to complete

subsequent sessions after a break if they so chose.

Each posture was presented on a separate page in a randomised order. For each page,

the observers were asked to rate each posture pi in P according to a seven-point Likert

scale for a set of four affective dimensions D = {valence, arousal, potency, avoidance}. An

example of the affective dimension posture judgment survey can be seen in Figure 5.16. A

set of 30 observers (17 females and 13 males), completed at least one session each. These

were combined to create a set of 15 evaluations on the complete set of postures P .
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Figure 5.16: Example of the affective dimensions posture judgment survey

5.6.2 Overview of the Survey Data

The first step in the analysis was to gain an overview of how the set of observers O judged

the affective postures. To this aim, each affective dimension dg was examined separately

and is represented as a series of bar charts. Due to space constraints, the complete set of bar

charts can be found in Appendix F. Each row is a posture pi and each column is an affective

dimension dg : g = 1, ..., 4. The x-axis shows the rating scale (i.e., 1 to 7) and the y-axis

shows the number of evaluations obtained for each rating in the scale. The number to the

right of the posture image is used as a posture identifier to allow for easy identification for

the discussions that take place in the remainder of the chapter. Some of the most interesting

results are presented in this section.

An examination of the arousal dimension revealed that the majority of the evaluations

gave at least 20 of the postures (e.g., postures 1, 2, 4, 13, 16, 32, 33, 36, 37, 41, 68, 70,

71, 75, 80, 84, 85, 87, 89, 91, 93) ratings of 5 or above, i.e., high arousal. A sampling
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(a) (b)

Figure 5.17: (a) High arousal postures, i.e., evaluations of rating 5 and above; (b) Low
arousal postures, i.e., evaluations of rating 3 and below. For each bar chart, the x-axis
shows the rating scale (i.e., 1 to 7) and the y-axis shows the number of evaluations obtained
for each rating in the scale. The number to the right of the posture image is used as a
posture identifier to allow for easy location of the posture in Appendix F
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of these postures is depicted in Figure 5.17(a). What is interesting to note is that all of

these postures have either one or both arms bent at the elbows and/or raised over the head,

except for posture 41. In this case, the high arousal ratings could be accounted for by the

bent knee and slightly raised leg. Conversely, the configuration of the body of the postures

that achieved mainly ratings of 3 or below, i.e., low arousal, appears more closed. Refer to

Figure 5.17(b) for examples. For instance, the arms are extended straight down along the

body (slightly frontal for three of the postures) or crossed at the wrists. Furthermore, the

head and the upper body are somewhat bent forward or tilted to the side.

Figure 5.18: Low valence postures, i.e., evaluations of rating 3 and below are in the first
column. High valence postures, i.e., evaluations of rating 5 and above are in the second
column. For each bar chart, the x-axis shows the rating scale (i.e., 1 to 7) and the y-axis
shows the number of evaluations obtained for each rating in the scale. The number to the
right of the posture image is used as a posture identifier to allow for easy location of the
posture in Appendix F

An examination of the valence dimension also revealed a distinction between low and

high levels of valence postures (refer to Figure 5.18 for examples), although to a lesser degree

than for arousal. The configuration of the body in the low valence postures (the first column

of Figure 5.18) shows arms to be fairly straight and extended down, the head tilted to the
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side and the feet about shoulder width apart. This stance is contrasted with the high valence

postures (the second column of Figure 5.18) in which the elbows are bent (to varying degrees

across each posture), the head is almost straight up, not tilted, and the feet are much closer

together or crossed in one instance.

Figure 5.19: Examples of postures with split ratings for potency. For each bar chart, the
x-axis shows the rating scale (i.e., 1 to 7) and the y-axis shows the number of evaluations
obtained for each rating in the scale. The number to the right of the posture image is used
as a posture identifier to allow for easy location of the posture in Appendix F

The potency dimension is not as often investigated as the valence and arousal dimen-

sions. The overview of the survey data for potency revealed that there was nearly an equal

number of evaluations for both low and high ratings on each posture pi, causing a bimodal

distribution (refer to Figure 5.19 for examples). This result is similar to the results of the

affective dimensions investigation presented in Chapter 4.
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Figure 5.20: Examples of postures rated for the avoidance dimension. For each bar chart,
the x-axis shows the rating scale (i.e., 1 to 7) and the y-axis shows the number of evaluations
obtained for each rating in the scale. The number to the right of the posture image is used
as a posture identifier to allow for easy location of the posture in Appendix F

In the case of the avoidance dimension, there were no clearly defined ‘low’ or ‘high’

avoidance postures as rated by the observers. Instead, for the majority of the postures, the

observers’ judgments were spread across the entire rating scale, as shown in Figure 5.20.

5.6.3 Creating Benchmarks

The purpose of this section is to define the benchmarks for human recognition of dimensions

of affect from whole body postures. These benchmarks define the target recognition rates

for the automatic recognition models discussed later in the chapter.
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Observer agreement reliability results

To create a benchmark of human recognition of affective dimensions, the first step was to

assess the consistency in how the observers rated the postures. Cronbach’s α was computed

for O for each affective dimension dg : g = 1, ..., 4 separately. Recall from Chapter 3 that

the higher the α, the more consistent the ratings. The affective dimension with the highest

strength of agreement between the observers was arousal with an α of 0.816. The valence

dimension was second with an α of 0.628; potency third (α = 0.575) and avoidance last (α

= 0.423).

Given the low Cronbach’s α levels of the potency and avoidance dimensions, it was

decided to eliminate further examination of these two dimensions. Because not all observers

evaluated all postures, the PCA conducted in Chapter 4 was not possible here.

Benchmarks

To set the benchmarks of human recognition of affective dimensions from non-acted pos-

ture, the same method used throughout this thesis was implemented, random repeated

sub-sampling to create 10 trials, i.e., s = 1, ..., 10. For each trial, the set of observers O was

split into three disjoint subsets Os,1, Os,2 and Os,3 of five observers each. For each subset, a

ground truth rating gtm(pi, Osk was assigned to each posture pi for each dimension dg. The

between observers agreement B.Agr(dg, Osk), defined in Equation (3.4), and Cronbach’s α

were computed between Os,1 and Os,2 for each of the 10 trials, for the valence and arousal

dimensions separately. For each dimension dg : g = {valence, arousal}, the benchmark is

computed as the average between observers agreement B.Agr(dg, Osk) across the 10 trials.

For valence the benchmark is 84.41%, SD = 1.14 and for arousal it is 87.37%, SD = 1.68.

The results are listed in Table 5.10. The between observers agreement B.Agr(dg, Osk) ranges

from 83% to 89%, which seems high compared to the equivalent testing in the affective state

labels, Section 5.2.3. However, the between observers agreement B.AgrLabel(Os,1, Os,2)

in the affective state labels testing was coded as binomial, whereas the between observers

agreement B.Agr(dg, Osk) in the affective dimensions testing takes into account distances
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between judgment ratings.

Table 5.10: The benchmarks computed for the affective dimensions. The B.Agr(dg, Osk)
are listed in column 3 and Cronbach’s α levels are listed in column 4. The benchmarks are
listed in the last column.

Human recognition benchmarks

Affective dim Trial B.Agr(dg, Osk) ∗ 100 Cronbach’s α Benchmark

Valence

1 84.93% 0.327

84.41%

2 84.57% 0.399
3 84.22% 0.432
4 85.28% 0.501
5 86.17% 0.534
6 84.57% 0.437
7 84.57% 0.427
8 81.91% 0.453
9 84.57% 0.406
10 83.33% 0.330

Arousal

1 89.18% 0.739

87.37%

2 86.52% 0.702
3 87.59% 0.706
4 85.99% 0.696
5 89.36% 0.787
6 85.46% 0.658
7 89.18% 0.801
8 84.57% 0.598
9 87.77% 0.707
10 88.12% 0.778

5.6.4 Discussion

The overview of the data revealed that there was little consistency in how the set of observers

O seemed to rate the set of postures P for the potency and avoidance dimensions, while

the overview of the data was better for the valence and arousal dimensions. These are

the two dimensions that are most typically examined. Reasons for the poor performance

on the potency and avoidance dimensions could be due to the use of static information

or the subtlety of many of the postures. Another reason could be that potency, i.e., the

player’s control over the situation, and avoidance, i.e., level of approach or withdrawal, are
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not apparent from the video game situation used. Finally, the poor consistency could be

due to the experimental procedure used for the survey. Only very short descriptions of the

meaning of each dimension were provided, thus it may be that the observers interpreted

these descriptions differently. While the terms used to describe valence and arousal were

quite standard, the terms used to describe potency and avoidance may not have been as

easily understood.

5.7 Low-Level Posture Description Analysis

To assess the discriminative power of the low-level posture description for distinguishing be-

tween ratings of valence and arousal, the same set of features F = {fi1, ..., fi41} described in

Section 5.3 was used. Each low-level posture feature fiw was subjected to one-way ANOVAs

for each affective dimension dg separately. The results are summarised in Tables 5.11 and

5.12. Listed in the first column of both Tables are the low-level features shown to be impor-

tant for discriminating between levels of the dimensions (i.e., 1 to 7) with the significance

level shown in the last column. The means for each affective dimension dg rating c are

shown in the middle columns. Bonferroni post hoc comparisons were implemented here as

opposed to Tamhane’s T2, due to equal variances (verified using Levene’s test of homo-

geneity of variance). The superscript letter pairs listed with the means denote significant

differences between those dimension level pairs according to the Bonferroni post hoc com-

parisons. Reported in this section is a discussion on the most interesting results of each

affective dimension dg, illustrated with a boxplot and corresponding avatar examples. The

boxplots can be seen in Figure 5.21.

5.7.1 Valence

The results for the valence dimension are listed in Table 5.11. Significant differences were

obtained for six of the 41 low-level posture features. The boxplot in Figure 5.21(a) shows

the results for the y rotation of the shoulder. For this feature, the significant differences
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(a) Valence (b) Arousal

Figure 5.21: Examples of low-level posture description features with significant differences
between scale ratings for each affective dimension. (a) Valence: y rotation of the left shoul-
der; (b) Arousal: y rotation of the right shoulder

occurred for scale rating 2 against rating 6. The shoulders of postures rated 2 tend to be

rotated inward, toward the body, whereas the shoulders of postures rated 6 appear rotated

outward. Examples can be seen in Figure 5.22.

Table 5.11: The low-level posture description features which reached significance between
the ratings for valence (one-way ANOVA with df = 5 (ratings). There were no ratings of
7.). For each feature fiw, a-e pairs demonstrate the significant differences between means
according to Bonferroni post-hoc comparisons. Rot. = rotation, L. = left, R. = right

Means for valence ratings
Low-level feature 1 2 3 4 5 6 p
y rot. L. collar .55 .47 .57a .52 .45a .55 .008
y rot. R. collar .45 .53 .43a .48 .55a .45 .008
z rot. L. shoulder .49 .59a .51 .54 .52 .41a .041
y rot. L. shoulder .53 .68a .51 .53 .51 .39a .051
x rot. L. wrist .63 .50 .51 .58 .62 .71 .052

5.7.2 Arousal

The results for the arousal dimension are listed in Table 5.12. Significant differences were

obtained for seven of the 41 low-level posture features. The boxplot in Figure 5.21(b) shows
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Figure 5.22: Avatar examples representing postures for the significant differences of the y
rotation of the shoulder for valence. (a) Representing rating 2 are postures 26 and 76; (b)
Representing rating 6 are postures 68 and 70. Recall from Section 5.6.2 that the numbers
refer to the posture position in the bar charts located in Appendix F for easy cross-referencing

the results for the y rotation of the shoulder. For this feature, the significant differences

occurred for ratings 2 through 4 against rating 7. According to the boxplot, the shoulders

for postures with ratings 2 through 4 generally are only very slightly turned in and the

rating 7 postures are turned outward slightly. While only two postures achieved a rating of

7, in both cases the shoulders are indeed turned outward. Examples can be seen in Figure

5.23.

Table 5.12: The low-level posture description features which reached significance between
the ratings for arousal (one-way ANOVA with df = 5 (ratings). There were no ratings of
1.). For each feature fiw, a-e pairs demonstrate the significant differences between means
according to Bonferroni post-hoc comparisons. Rot. = rotation, L. = left, R. = right

Means for arousal ratings
Low-level feature 2 3 4 5 6 7 p
y rot. L. shoulder .61a .64bc .57d .51 .42b .18acd .000
z rot. R. shoulder .68 .68 .84 .81 .84 .86 .052
y rot. R. shoulder .57a .55b .56c .45 .34abc .29 .001
y rot. R. elbow .09 .09 .08 .19 .30 .60 .009
x rot. R. wrist .45 .43 .57 .51 .56 .68 .036
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Figure 5.23: Avatar examples representing postures for the significant differences of the y
rotation of the shoulder for arousal. (a) Representing ratings 2 to 4 are postures 6, 53,
and 24; (b) Representing rating 7 are postures 13 and 70. Recall from Section 5.6.2 that
the numbers refer to the posture position in the bar charts located in Appendix F for easy
cross-referencing

5.8 Automatic Recognition of Affective Dimensions from

Posture

Automatic recognition models were built and tested for the valence and arousal dimensions

separately. Testing was conducted to assess the models’ ability to generalise to both new

observers and new postures. To build the automatic recognition models, each posture pi

was associated with the median as the ground truth rating gtm(pi, O) for each affective

dimension dg, and a vector of 41 low-level posture description features F = {f1, ..., f41}
listed in Table 5.4.

The topology of the MLP used in this study consists of three layers: one input, one

hidden and one output. The number of nodes in the input layer corresponds to the number

of features used. The number of nodes in the hidden layer corresponds to the number of

input nodes divided by two. The output layer contains one node. 10,000 epochs were used

to train the recognition models.
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5.8.1 Generalising to New Observers

To test the ability to generalise to new observers, automatic models were trained with the

previously unused observer subset three Os,3 and tested with Os,1 for each of the 10 trials.

The results are summarised in Table 5.13. The average recognition model results across the

10 trials for valence was 83.86% (SD = 2.22%) and for arousal was 87.15% (SD = 1.88%).

Table 5.13: The performance rates for the automatic recognition models that generalise to
new observers for the valence and arousal dimensions.

Generalising to new observers

Affective dim. Trial Auto rec. Average SD

Valence

1 84.89%

83.86% 2.22%

2 84.74%
3 81.73%
4 84.21%
5 82.98%
6 84.2 %
7 83.69%
8 86.52%
9 79.08%
10 86.51%

Arousal

1 88.46%

87.15% 1.88%

2 88.81%
3 84.04%
4 87.41%
5 89.72%
6 86.52%
7 87.59%
8 88.3 %
9 84.22%
10 86.46%

5.8.2 Evaluation and Discussion

The goal of the automatic models for recognising levels of affective dimensions models from

posture is to achieve performance rates comparable to the benchmarks that were set by the

human observers. The results are illustrated in Figure 5.24. For both dimensions, while not
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all of the automatic models’ recognition rates surpass the benchmark, they achieve a similar

percentage of recognition. While this suggests that the goal has almost been achieved, use of

the median resulted in very few postures at the extreme ends of the scale, making it difficult

for the automatic recognition model to build rules for classifying those postures.

(a) (b)

Figure 5.24: Observer generalisation results for (a) valence and (b) arousal, and the observer
benchmarks for each

In an examination of how specific postures were classified by the recognition model, the

results were compared with the results of the affective state classification results presented in

the first half of this chapter. The reasoning was that several research studies that examined

affective dimensions classified affective information according to affective state labels and

investigated how it fit into a 2D affective space [PPS01][Bre03][ZTP+05]. Thus for each

dimension dg, each posture pi was associated with the rating predicted by the automatic

recognition model as well as the ground truth label gtl(pi, O) from the first half of the

chapter. The set of postures P was then ordered according to affective state label lj . The

results revealed that all of the frustrated and triumphant postures were recognised as high

arousal, as expected according to Russell’s [Rus80] circumplex model shown in Figure 2.4

(Chapter 2). Furthermore, the majority of the triumphant postures were recognised as high

valence. Examples of high arousal/high valence postures can be seen in Figure 5.25). Ideally,

as frustrated is a negative state, the frustrated postures should be recognised as low valence.

However, the results were split between low and high valence.
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Figure 5.25: Examples of high arousal, high valence postures predicted by the recognition
model

5.8.3 Generalising to New Postures

Automatic recognition models were also tested for their ability to generalise to novel pos-

tures. Each posture pi was associated with its corresponding feature vector F , and the

median rating was assigned as the ground truth gtm(pi, O). The models were built using an

MLP with 10 fold cross-validation. The percentage of recognition achieved for the valence

dimension was 84.2% (SD = 12.8%) and for the arousal dimension it was 82.9% (SD =

14.1%).

5.8.4 Evaluation and Discussion

In generalising to novel postures, there was little difference in performance between the two

dimensions. The same result was found in the acted posture generalisation examination

presented in Chapter 4, Section 4.8.3. However, the difference is that in the non-acted

posture generalisation examination presented here, the performance for valence was slightly

better than arousal. In Chapter 4 it was postulated that arousal may be easier to recognise

than valence using acted expressions as they tend to be more exaggerated and the difference

between activated (i.e., high arousal) and less activated (i.e., low arousal) types of emotions

expressed through posture seems vast. Could the slight difference between the two studies

presented in this thesis, i.e., valence and arousal recognised from body posture, be due to

using acted postures in Chapter 4 and non-acted naturalistic (i.e., more subtle) postures
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in this chapter? Indeed, a study by Amir et al [AWH09] which obtained naturalistic, non-

acted emotion expressions found that arousal was more difficult to judge than valence from

a combination of affective speech and facial expression data.

5.9 Chapter Summary

This chapter presented experiments designed to investigate the recognition of subtle affective

states and affective dimensions from non-acted body posture information. Similar to the

acted postures study presented in Chapter 4, it was hypothesised that human observers

could achieve above chance agreement levels (both within and between sets of observers O)

when attributing subtle affective states and levels of affective dimensions to static images

of a faceless humanoid avatar. It was also hypothesised that automatic recognition models

could be grounded on a set of low-level posture information and achieve recognition rates

similar to benchmarks computed from human observers.

Posture data was collected using a Gypsy motion capture suit of participants playing

sports video games with the Nintendo WiiTM. Because the players were unaware of the true

purpose of the study, it is believed that their bodily expressions of affect were non-acted and

unsolicited. After locating the affectively expressive sections of the motion capture data, a

different set of participants, the observers, was asked to judge static posture images taken

from the motion capture data by associating one of four affective state labels (concentrating,

defeated, frustrated and triumphant) and levels of four affective dimensions (valence, arousal,

potency and avoidance) to each posture.

To analyse human agreement rates, within observers’ agreement and inter-observer agree-

ment reliability were ascertained for the observers’ judgments first. The results were found to

be above chance level for the set of affective state labels L as hypothesised. For the affective

dimensions, an overview of the survey data and the Cronbach’s α scores computed within ob-

servers indicated good consistency between observers’ judgments for the valence and arousal

dimensions but little consistency between observers’ judgments for the for the potency and
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avoidance dimensions. Based on these results, these two dimensions were eliminated from

further analysis. Next, a set of benchmarks was defined from the observers’ judgments by

computing the average of the between observers agreements B.AgrLabel(Os,1, Os,2) for the

set of affective labels L and the between observers agreements B.Agr(dg, Os,1, Os,2) for the

valence and arousal dimensions.

The next section explained the low-level information used to describe the postural dis-

plays after which an anlysis of the low-level posture description was carried out to assess

how disciminative each feature fw was for distinguishing between affective states and af-

fective dimensions. The results showed significant differences between low-level upper body

features for both the set of affective state labels L and the valence and arousal dimen-

sions. For the affective states, the most significant differences typically occurred between

the less active states (concentrating and defeated) and the more active states (frustrated and

triumphant). Associated postures reflected these differences. For the valence and arousal

affective dimensions, the significant differences between scale ratings were less distinct. For

both dimensions, few postures were judged at either extreme of the scale.

In the second half of the analysis for both the affective state labels and the affective

dimensions, automatic recognition models were built and tested to determine if performance

rates similar to the benchmarks could be obtained (observer generalisation) using repeated

sub-sampling validation. The results showed that the recognition rates for many of the

trials were equal to or better than the benchmarks. In the case of the affective state labels,

some of the classification problems that occurred were attributed to the very low number

of postures for the frustrated category, meaning that the recognition model was unable to

build classification rules for that category. An examination of specific recognition model

misclassifications indicated some difficulty for the recognition model to distinguish between

frustrated and triumphant. In the case of the affective dimensions, the recognition rates for

the observer generalisation models performed similarly to the benchmarks, with the average

across the recognition models for each dimension dg less than 1% lower than the benchmarks.

Automatic recognition models were also tested for their ability to generalise to novel



210

postures (using 10 fold cross-validation). In the case of the affective state labels, the recog-

nition rates were found to be similar to recognition rates discussed in Chapter 2 for automatic

recognition systems built with acted postures and considering basic emotion categories over

the more difficult to recognise non-basic affective states. An investigation of the recognition

rates for each affective state label lj showed a confusion for the recognition model between

concentrating and defeated postures. Furthermore, several postures from all labels were mis-

classified by the recognition model as concentrating. This was not unexpected considering

the disproportionate number of concentrating postures over the number of postures for the

other affective labels. In the case of the affective dimensions, the recognition rates for both

valence and arousal were well above chance level with the valence model performing slightly

better than the arousal model. The high recognition rate seems surprising given the subtle

non-acted postures. This could be due to the use of the median as the ground truth label

which meant that very few postures were rated at the extreme ends of the scale.

The next chapter outlines the third and final study in the incremental approach. This

study aims to to evaluate how an affective posture recognition system performs when applied

to sequences of non-acted static postures as if in a runtime situation.



Chapter 6

Case Study 3: Real Time

Affective Posture Recognition

As the third step in the incremental approach, the aim of the final study presented in this

chapter is to evaluate how the affective posture recognition system performs when applied to

sequences of non-acted static postures as if in a runtime situation. In this study, the affective

postures have not been manually extracted, as opposed to the previous two studies which

examined single, apex instant postures that were explicitly, manually extracted. Another

difference is that sequences of postures are analysed in this study. As this study builds on

the non-acted postures study presented in Chapter 5, a video game scenario was selected in

which the participants played tennis with the Nintendo Wii. Wii tennis was chosen based

on informal discussions with the players from the non-acted study presented in Chapter

5. When asked to rank the Wii sports games according to enjoyment, the majority of the

players ranked tennis as the most enjoyable.

The chapter is organised in the following manner. The affective posture recognition sys-

tem is described in Section 6.1. Sections 6.2 to 6.5 explain the approach taken to test the

system on a set of posture sequences. Section 6.2 explains the posture corpora collection

211
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which consists of a similar method described in Chapter 5. Section 6.3 discusses the posture

judgment surveys which were conducted to build a training set and a testing set for inves-

tigative purposes. The low-level posture description is explained in Section 6.4. In Section

6.5, the system is tested and the results are reported and evaluated. A discussion is provided

in Section 6.6 and the chapter ends with a summary in Section 6.7.

6.1 The Affective Posture Recognition System

Figure 6.1: The affective posture recognition system. A vector of low-level posture features
Fi is computed for each posture pi in a posture sequence psh. The posture description Fi

of each posture pi is then sent to the MLP. A decision rule is applied to an entire sequence
of the MLP output, after which the affective state label lj for the posture sequence psh is
determined

The affective posture recognition system is implemented as a combination of an MLP

and a decision rule, similar to the approach used by Ashraf et al [ALC+09] to automatically

recognise pain from facial expressions. Refer to Figure 6.1 to see the flow of the system

(which has already been trained with a set of postures P ). A vector of low-level posture

description features Fi is computed for each posture pi in a posture sequence psh. A posture

sequence corresponds to a replay window as defined in Chapter 5, Section 5.1.3. The posture
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description Fi of each posture pi is then presented to the trained MLP and each individual

posture pi within the sequence is evaluated. Given a posture sequence psh : h = 1, ..., g,

the output of the MLP for a posture pi is a probability distribution for the set of labels

L = {defeated, triumphant, neutral} for each posture pi of psh. For each posture sequence

psh, cumulative scores Lsum(lj) : j = 1, ..., 3 are computed as

Lsum(lj) =
1
n

n∑

i=1

qij (6.1)

where qij is the output score for posture pi and label lj (i.e., the probability that a label lj

is used to label pi of a sequence psh) and n is the number of postures with that label.

Next, a decision rule is applied to the normalised cumulative scores Lsum(lj) of the

posture sequence psh. The decision rule is employed as a way to group the postures in each

sequence and assign a label lj to an entire sequence instead of individual postures only (as

is the case with the MLP). The assumption is that only one affective state is expressed in

each posture sequence psh, i.e., replay window. The decision rule is defined as follows

if(Lsum(defeated) < threshold && Lsum(triumphant) < threshold)

{sequence label = neutral}

else if(Lsum(defeated) > Lsum(triumphant))

{sequence label = defeated}

else if(Lsum(defeated) < Lsum(triumphant))

{sequence label = triumphant} (6.2)

where Lsum(defeated) and Lsum(triumphant) are the normalised cumulative scores for the

defeated and triumphant affective state labels for the posture sequence psh. The threshold

was experimentally defined by building ROC curves using the normalised cumulative scores

for Lsum(defeated) and Lsum(triumphant) after which the coordinates of the curves were



214

assessed. The point at which the true positive rate and the false positive rate were close to

equal for the defeated ROC curve was chosen as the threshold [ALC+09]. The affective state

label lj of the posture sequence psh is the output of the decision rule.

6.2 Posture Corpora

6.2.1 Motion capture data collection

As with the previous two studies, motion capture data of whole body posture and movement

information was collected as the first step. The motion capture collection process was similar

to the one presented in Chapter 5. The same Gypsy 5 motion capture system was used.

After reading the information sheet and signing a consent form, a player-specific calibration

model was created using the process reported in Chapter 5, Section 5.1.

In addition to having their body motions recorded with a motion capture suit, the

players were also videotaped. The purpose of videotaping the sessions was so that the

replay windows (described in Chapter 5) could be more easily located during analysis. This

step can be easily automatised when the game is connected to the recognition system. The

camera was placed at the back of the room and slightly to the side, allowing the video game

and the player’s upper body (from behind) to be recorded. The camera placement behind

the players aimed to maintain as natural a setting as possible.

6.2.2 Players

Ten players were recruited for participation (three females) ranging in age from approxi-

mately 20 to 40. All players had little to no experience playing with the Nintendo Wii as

experienced players have been shown to be less expressive with their body postures when

they play to win [BBKP07][PBBvDN09]. The players were asked to play Wii tennis for at

least 20 minutes and have their body motions recorded while wearing the Gypsy 5 motion

capture suit. Again, as with the previous non-acted study, the players were unaware of the
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purpose of the study to ensure that any affective displays would be spontaneous and non-

acted. In the previous study, as the experimenter, I communicated with the players in an

aim to encourage a more natural atmosphere. In this study players were asked to come with

a friend with whom they could interact during game play as it has been shown to increase

affective output [RST+05].

6.2.3 Replay window identification

After collecting the motion capture information, the files were annotated by locating the

replay windows of each gaming session. Like the study presented in Chapter 5, the replay

windows, considered the relevant information for this research, are the periods in the video

game after which a point has been won or lost. The posture sequences are taken from these

replay windows. The number of replay windows (i.e., posture sequences) can vary for each

gaming session. Furthermore, the length of the posture sequence may also vary, meaning that

the number of postures within a sequence is not fixed. The replay windows were manually

located by viewing the video and motion capture data simultaneously. The reason for

manually identifying the replay windows was that if the automatic recognition system being

proposed here was integrated into an existing software application, the application itself

would be able to signal the periods under investigation. The output of the identification

process was a contiguous section of motion capture data.

6.3 Posture Judgment Surveys

Two separate posture judgment surveys were conducted in order to build separate training

and testing sets for use in testing the affective posture recognition system. A separate group

of observers was recruited for each survey.
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6.3.1 Building the Training Set

A new training set was built for this study because, although this study extends the previous

non-acted study, the set of labels L has changed by removing concentrating and frustrated

and adding neutral. Furthermore, the previous study focused on apex instants only and this

study investigates the recognition of posture sequences which may include a wider variety

of subtle, natural expressions. Therefore, additional non-apex postures were sought.

A manual extraction of the training set postures was used in order to ensure that a

variety of posture configurations were considered. To build the training set, three postures

were taken for each of 20 replay windows, yielding 60 postures. Three postures spanning an

entire replay window were used to represent the entire movement for training the automatic

recognition model considering that most of the movements were short in duration and/or

contained little movement. The three postures were chosen as: i) a posture at the start of

the replay window (as soon as game play stopped when a game point was won or lost); ii)

a posture in the middle of the movement itself; iii) the apex of the movement.

A set of eight observers (i.e., |Otraining| = 8) was recruited to judge the set of postures

(i.e., |P | = 60) online, using the same procedure as the posture judgment surveys (for the

discrete affective state categories) presented in Chapters 4 and 5, respectively. As with the

previous studies, the posture order was randomised for each observer ok : k = 1, ..., 8, who

was asked to associate an affective state label lj : j = 1, ..., 3 to each posture pi one page

at a time. For each posture pi, the label lj with the highest frequency of use (as defined in

Chapter 3, Equation (3.1)) was determined to be the ground truth label gtl(pi, Otraining),

yielding 10 defeated, 17 triumphant and 33 neutral postures. To create a more balanced

training set, the defeated (22) and triumphant (16) postures from the Chapter 5 study were

added to create a final training set of 98 postures: 32 defeated, 33 triumphant and 33 neutral.
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6.3.2 Building the Testing Set

To build a testing set for automatic recognition, posture sequences were automatically ex-

tracted from the remaining replay windows (i.e., those not used to build the training set).

Due to the high capture rate of the motion capture system (120 frames per second), the

configuration of the body did not change significantly from one motion capture frame to

the next. Therefore, it was not necessary to extract every posture within a replay window.

Instead, every 40th posture was automatically extracted which allowed for a variety of pos-

tures that represented the entire movement within a sequence. Due to the differences in

replay window length, the automatic extraction yielded posture sequences ranging from two

to 40 frames in length. 836 posture frames across 75 posture sequences were extracted. Two

posture sequence examples are shown in Figure 6.2.

(a)

(b)

Figure 6.2: Posture sequence examples - posture frames automatically extracted from two
different replay windows of motion capture files

A set of five observers (three females) (i.e., |Otesting| = 5) was recruited to view these

posture sequences and assign a single label lj to each entire sequence psh, as opposed to

labelling each individual posture pi within a sequence. Each sequence was viewed as an

animated clip of a simplistic humanoid avatar. This approach was adopted in order to

determine the overall affective state of the player across the entire sequence as opposed to
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each particular posture instant.

The posture sequences and the evaluation directions were emailed to the observers who

agreed to take part. The entire task took approximately 1.5 hours to complete. The observers

were instructed to take a break every 30 minutes in an effort to control for boredom. The

set of posture sequences was randomly divided into four subsets, different for each observer.

As with the training set, to determine the ground truth gtl(psh, Otesting) of a sequence

psh in the testing set, the label lj with the highest frequency of use freq(psh, lj) was chosen

for each posture sequence psh. The within observers agreement W.AgrLabel(L, Otesting)

(as defined in Chapter 3, Equation (3.3)) was 66.67% with Fleiss’ kappa reaching 0.162,

indicating slight agreement. Possible reasons for the low consistency between the observers’

judgments may be due to the subtlety of the posture sequences, the limited set of labels

L from which to choose or the small set of observers Otesting considered. There were 14

posture sequences psh with the defeated ground truth label, 8 triumphant, 39 neutral and

14 ties. As outlined in Chapter 3, in the case of ties, the ground truth gtl(psh, Otesting) was

randomly selected between the tied labels.

6.4 Low-Level Posture Description

The low-level posture description method used was the same as the one presented in Chapter

5. Unfortunately however, the three head features had to be removed due to a hardware

malfunction in which the head rod repeatedly became fixed in one position. The considerable

use of the motion capture system from one study to the next may have caused excessive

wear and tear on the hardware. An analysis was conducted to confirm that the neck features

could account for the information provided by the head features. The Pearson correlation

coefficient r results for each corresponding pair of head and neck features from previous

accurate data showed high correlation (df = 101, p < .01); rz = .82, rx = .98, ry = .97. The

results are illustrated in the scatterplots of Figure 6.3.

A vector of low-level posture description features Fi = {fi1, ..., fi38} was computed for



219

(a) z rotation (b) x rotation

(c) y rotation

Figure 6.3: The Pearson correlation coefficient scatterplots of the head and neck features;
(a) z rotation; (b) x rotation; (c) y rotation

each posture pi of the training set and each posture pi in each sequence psh of the testing set.

The features are listed in Table 5.4 and include all but the three head features as explained

in the previous paragraph.

6.5 Testing Results

The affective posture recognition system was trained with the training set of 98 postures

described in Section 6.3.1 and tested with the testing set of 75 posture sequences described
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in Section 6.3.2. The percentage of correct automatic recognition achieved for the 75 posture

sequences was 52%. It is noted that, as stated in Section 6.3, there were 14 posture sequences

that were assigned two affective state labels with equal frequencies by the set of observers

Otesting, thus the ground truth label gtl(psh, Otesting) was randomly determined between

those two labels. Taking this into account and assessing correct recognition according to

either of the two labels, the recognition rate increased to 57.33% which is still lower than the

human observer overall agreement of 66.67%. However, it is well above chance level (33.33%

considering three labels) and similar to the automatic recognition rates of the affective label

testing on non-acted postures presented in Chapter 5.

To investigate the possible factors that may have contributed to the lower than antici-

pated system performance rate, a confidence rating task was carried out. A new observer

o6 was recruited to view the seven posture sequences for which the set of observers Otesting

had assigned two affective state labels with equal frequencies, and were also misclassified

by the system. The task was repeated three times over three days (i.e., three trials). For

each trial the seven posture sequence clips were presented in a randomised order with a

different label lj from the set of labels L. The observer o6 was asked to view the animated

posture sequences and provide a confidence rating on a scale from 1 (not confident) to 5

(very confident) that the label lj corresponds to the expression portrayed by the sequence

[AR09]. In the event of posture sequences with low confidence ratings (i.e., 1 or 2), o6 was

asked to provide an alternative label lt from the remaining two. The results are listed in

Table 6.1.

Looking at the Table and comparing it with the judgments from the group of observers

and the system results, a few issues and limitations are highlighted. One of the most obvious

findings is that some posture sequences seem to be ambiguous, partially due to the subtlety

of natural, non-acted postures. For instance, ps4 and ps5 received confidence ratings of 3

or above no matter which label was presented with the sequence. This result may mean

that no amount of system modifications or additional observer judgments may resolve the

labelling issue for the sequences. It is possible that these sequences were not affective, but
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also did not fit into the neutral category. It is also possible that the affective state expressed

was not in the set of affective state labels L considered.

Another issue highlighted by the confidence rating task may be the small observer sample

size. The addition of the three confidence ratings would have changed the ground truth label

gtl(psh, Otesting) of some posture sequences. For example, the label ties for ps6 and ps7 in

particular could possibly have been resolved.

A third issue involves the training set of postures. It may not be well separated enough

due to low agreement amongst the observers for some of the postures. Having a better

defined, separable training set could help to increase the system’s recognition rate. There

are several possible ways to handle the training set issue. First and most simply, the low

agreement postures could be removed. However, this could create an unbalanced training

set, depending on the number of postures removed from each category. Therefore, additional

high observer agreement postures would have to be found. Second, additional information

for the training set postures could be gathered at the posture judgment level. For instance,

in addition to choosing an affective state label lj , the set of observers O could be asked to

provide a confidence rating, an intensity level or a label ranking for each posture pi. This

information could be used to bias the computation of the most frequent labels by using the

information as way to weight the evaluation of each observer. Third, expert coders could

be enlisted to label the training set instead of non-expert coders. However, the goal of

recruiting non-expert coders was to be able to create a system that acts like a lay person

in order to simulate human-human interaction situations. Such an approach is useful in

situations where the aim is not about creating technology to improve peoples’ ability in

recognising the affective state of their interlocutor or to substitute affect reader experts.

Rather, the aim of this study was to create technology that can play the role of a generic

companion such as a partner or an adversary in a computer game.
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6.6 Discussion

Inter-observer agreement reliability on labelling the testing set of posture sequences was

calculated using Fleiss’ kappa. The results (0.162) indicated only slight agreement between

the observers’ judgments. While the result is clearly lower than desired, it is not unexpected

given the use of naturalistic data [AR09]. “Even for a human expert, it is difficult to define

what constitutes an emotion” [AR09]. The argument could be made that inter-observer

agreement reliability may increase considerably if a larger set of observers O was enlisted.

However, this is not necessarily the case. In the study by Afzal and Robinson [AR09],

they recruited 108 non-expert coders to judge non-basic affective states from naturalistic

expressions. The reliability rating was quite low at 0.2, indicating, like the study presented

in this chapter, only slight agreement.

The affective posture recognition system achieved a recognition rate of 57.33%. While

the recognition rate is well above chance level (33.33% considering three affective states)

and similar to the automatic recognition results obtained in the affective category testing of

Chapter 5, it is still lower than the human observer agreement target of 66.67%. However,

the results are comparable to other automatic recognition systems of body movement or

dance presented in Chapter 2, Table 2.10. For instance, the recognition system presented

by Camurri et al [CMR+04] reached a low recognition rate of 36.5% (chance level = 25%),

considering acted dance movements of basic emotions. Indeed, the system performance was

considerably lower than the 56% agreement between the observers. Similar to Camurri et

al’s study, the study by Kapur et al [KKVB+05] also considers acted dance movements of

basic emotions. However, using several different automatic classifiers, they achieved higher

recognition rates (62%-93%), but most still below the observers’ level of agreement (93%).

The last bodily expression recognition system to discuss is that of Bernhardt and Robinson

[BR07] which focused on the recognition of acted knocking expressions of basic emotions.

The results achieved by the system presented in this thesis are comparable to Bernhardt

and Robinson’s biased system (i.e., personal idiosyncrasies not removed) 50%.

The approach taken in this thesis for building the affective posture recognition system
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was similar to that of Ashraf et al [ALC+09] in the use of an automatic modeling technique

combined with a decision rule in order to determine an affective state lj of a sequence of

input (i.e., static postures in this thesis). The main disadvantage of the system is that

the order of presentation of the individual postures in a sequence is not considered. Each

posture pi in a sequence psh is evaluated separately upon its presentation to the MLP. This

issue could be addressed in future work by using a different classifier such as Hidden Markov

Models that take into account temporal information.

6.7 Chapter Summary

The the study presented in this chapter provides an understanding of how to create affective

recognition systems when the affective expressions are subtle and naturalistic. This chapter

built on the non-acted postures study of Chapter 5 by examining a proof of concept for

the automatic recognition of sequences of static postures that were not manually extracted.

Similar to the previous two studies presented in Chapters 4 and 5, it was hypothesised that

i) human observers could reach above chance agreement on the sequences and ii) that an

automatic recognition system could achieve accuracy rates similar to the human observers.

An affective posture recognition system was built using a combination of an MLP and a

decision rule defined in this research. The rationale is that the decision rule allows for the

affective state label to be determined according to an entire posture sequence instead of to

single static postures, as the MLP alone does.

The first step was to collect posture data in order to build training and testing sets

for investigating the performance of the affective posture recognition system. Posture data

was collected using a Gypsy motion capture suit of participants playing tennis with the

Nintendo WiiTM. The participants played the video game in pairs with a friend in an

attempt to create more genuine affective expressions [LLCBB08]. A training set of posture

data was built using a combination of postures from the motion capture session described

in this chapter and the session presented in Chapter 5. A testing set of posture sequence
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data was determined by automatically extracting sequences of postures that occurred during

the replay windows. Human observers labelled each posture sequence at sequence level as

opposed to frame level as other research has shown that reliable results could be obtained

[ALC+09]. As hypothesised, the target rate of above chance level agreement was obtained.

The performance of the affective posture recognition system was lower than the target

within observers agreement but still better than chance level. An evaluation of the results

highlighted some of the potential causes of misclassification, such as ambiguity of the posture

sequences and low observer agreement on training set postures. Possible solutions were

considered.
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Chapter 7

Conclusions

This thesis is fundamentally concerned with and contributes to the field of affective com-

puting. In particular, the research presented investigated a low-level description of body

posture, proposed a method for creating benchmarks for evaluating affective posture recog-

nition models, and provided an understanding of how posture is used to communicate affect.

Chapter 2 provided both a background to affect recognition and explained the areas that

still lack sufficient research which helped define the research questions and contributions

presented in Chapter 1. An approach was devised for achieving the contributions (Chapter

3) which was implemented through a series of three case studies. Each case study was de-

signed to examine the recognition of affective postures in two directions: i) through human

observers and ii) through automatic recognition models.

The first case study investigated the recognition of acted postures of basic emotions

and affective dimensions (Chapter 4). The second case study aimed to address the lack

of automatic recognition systems focused on naturalistic expressions. Therefore, the study

investigated the recognition of non-acted postures of non-basic affective states and affective

dimensions (Chapter 5). Expanding on non-acted affective posture recognition, the third

case study was designed to evaluate automatic affect recognition from posture sequences to

examine how effectively the system may perform in a runtime situation when the affective

226
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postures arrive continuously and have not been manually selected (Chapter 6).

The remainder of this chapter is organised as follows. Section 7.1 discusses details of the

main contributions made by the research presented in this thesis. The main findings of each

study are highlighted according to each contribution. Potential directions for future work

to extend this thesis are presented in Section 7.2. Section 7.3 ends the chapter with a brief

summary.

7.1 Contributions

The investigation of a low-level description of posture

The main contribution of this thesis was the investigation of a low-level description of the

configuration of posture. The purpose was to examine if a low-level description could provide

enough information for recognising affect from posture. While behavioural science studies

have examined the role played by specific features of the body and whether they are pre-

dictive of specific affective states, as discussed in Chapter 2, there has been less work in

the computing fields to create computational models of affective body posture. The work

that does exist has focused mainly on high-level posture features [KPI04][KBP07] or body

movement such as dance [CMR+04][KKVB+05] or specific actions [BR07].

The posture description considered in this thesis focused on a low-level, static configu-

ration of the body. Findings of neuropsychological and neurophysiological research indicate

that configuration information can be instrumental in the recognition of biological motion

[HH06][ADGY07]. A major strength of the low-level posture description approach adopted

in this thesis was that it is general, meaning that it was independent of affective state or

situational context. Hence, the posture description could be easily adapted without having

to modify the way the posture description is computed.

The low-level posture description was evaluated in two directions. First, in Chapters 4

and 5, a statistical examination of the importance played by each feature was carried out to

understand the information in body posture that can be recognised by human observers. In
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both chapters, the results showed that specific features were predictive of specific affective

state categories and levels of valence and arousal dimensions. In general, the posture config-

urations attributed to the discrete basic emotions were in keeping with the results found by

Coulson [Cou04] and Wallbott [Wal98] in particular. For instance, sad postures were char-

acterised by a head bent forward and arms hanging down at the side of the body. However,

there were also some differences. In Chapter 4, observers from three different cultures were

considered and differences were noted in terms of which features each culture attributed to

the emotion categories studied. For instance, angry for the Japanese was characterised by

a forward bending head. The result differs from the results for the Sri Lankan observers in

which no distinct head position was found to specify angry. The result is also different from

angry postures in Coulson’s study which were characterised by a backward bending head.

The results of the low-level posture description examination for the non-basic affective

states were more difficult to validate with results from other studies because the same non-

basic affective states have not been studied in this capacity. Similarly, in the case of valence

and arousal, while research has investigated dynamic characteristics of body movement

[PPS01], the majority of the research examining specific features that can be attributed to

displays of these two affective dimensions has been carried out for facial expressions and

speech [CMK+06][SCDC+01].

The second direction in which the low-level posture description was examined was the

automatic recognition model level in Chapters 4-6. In each case study, the low-level posture

features were used to build automatic recognition models. The results showed that the

low-level posture description approach could be used to discriminate between both acted,

stereotypical posture expressions (Chapter 4) and more subtle, non-acted posture expressions

(Chapters 5 and 6) to levels similar to target benchmarks set in this thesis using a rigorous

method detailed in Chapter 3 and discussed in the following contribution. These results

demonstrate that automatic affective posture recognition systems can be built that act, i.e.,

recognise affect from posture, as well as a general human companion would.
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A method for creating benchmarks for evaluating affective posture recognition

The research in this thesis proposed a new approach for creating benchmarks to evaluate

automatic recognition models. The view taken was that there was no inherent ground truth

label that could be assigned to the affective expressions. Although some studies have used

observers’ judgments to compute the ground truth [KPI04][LNP02], they do not address the

variability that exists between the observers and the fact that the observers do not represent

the entire population. I proposed to build the ground truth by taking into account only the

observers’ evaluations and used a repeated sub-sampling method to build the benchmarks

in an attempt to increase the reliability for the observer population considered.

The benchmarks for evaluating automatic recognition models in affective computing

research have typically been based on the actors’ labels. A typical approach is to compare the

agreement between the observers (i.e., how well the observers agreed with the actors) and the

performance of the automatic recognition models [KKVB+05][CMR+04]. This approach was

considered to be quite limited as the number of observers recruited is generally low due to the

difficulty of gathering a large number of evaluations on the affective expressions over a large

number of observers. Furthermore, most of the observers recruited are often from a narrow

population. Thus, an approach was devised to account for this type of situation; a random

repeated sub-sampling method was implemented to create the benchmarks. The purpose

behind this method was to obtain performance rates that may reflect a real population. As

discussed in Chapter 3, repeated sub-sampling helped to ensure replicability, i.e., that the

results were not limited to a particular partitioning instance [Fin72].

Understanding how affect can be communicated through posture

The research presented in this thesis provided an understanding of how posture can be

used to communicate affect. It was examined through human observers’ judgments on

acted and non-acted affective expressions and the statistical analysis of the low-level posture

description as explained in the discussion in the first contribution. The knowledge that was

gained can also be used by researchers in other areas such as affect synthesis to create
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embodied avatars, affectively expressive robots, etc. by informing the researchers about

which low-level posture features indicate specific affective states. Indeed, the posture corpora

and the results of this thesis are already being used to build an affective language for

multimodal virtual agents [CPM+09].

7.2 Potential Directions for Future Work

The results of all three case studies indicated the effectiveness of creating automatic models

for recognising affective body posture. In addition, the results of each study brought to

light areas that could be extended. The first area is the low-level posture description.

The second area is to devise a more comprehensive method for defining a ground truth of

affective expressions by taking advantage of more of the information that is collected from the

observers. The third area deals with the understanding of how affect can be communicated

through posture. Finally, the fourth area is aimed at developing a more complex affective

posture recognition system.

Refine the low-level posture description

The entire body was investigated on the basis that affect is expressed through a variety

of configurations. A key question that is raised by the rapidly growing number of motion

sensing controllers is whether information from the entire body is necessary. Could enough

of the posture configuration be ascertained from the controller alone? In the case of the

affective states (Chapter 5), features from the non-controller side of the body were found to

be important. For instance, the ANOVA results found more information from the arm not

holding the controller to be important. This was less the case with the levels of valence and

arousal even though the postures were not always symmetrical, making this an interesting

issue to examine further.

The low-level posture description was examined in two situations in this thesis: an

acted scenario and a non-acted video game scenario. Both of these scenarios considered



231

standing postures only. A main advantage of the low-level description is that it is general and

independent of context, and applying the description to either standing or seated postures

should not make a difference. An investigation of the posture description in these situations

may help bring to light the existence of previously unforeseen issues or missing features.

Indeed, the posture description was preliminarily examined in a publication by the candidate

[KFBB05] (not included in the thesis) using a combination the of acted standing postures

investigated in Chapter 4 and postures from a non-acted seated situation with 70% correct

recognition achieved.

Due to limitations of the motion capture systems that were used in this research, features

that are definitely missing are detailed hand and finger movements, such as fists and pointing.

Clenched fists are a stereotypical feature of acted expressions of anger [MN89]. The ability

to detect these features could reduce misclassifications that occur between angry and happy,

and angry and fear [CMR+04]. To carry out this extension, data from a motion sensor glove

could be integrated with the low-level posture description.

A more comprehensive method for defining ground truth

The method used in this research for defining the ground truth of the affective postures

considers a single label assigned to each posture, i.e., the most frequent label or the median

scale rating. Thus, by distilling the observer labels into a single observation, the labels

provided by other observers who may also be considered important, are ‘lost’. Taking

advantage of this information may be especially necessary when dealing with non-acted,

subtle affective expressions as it is possible for more than one affective state to occur at the

same time [AR09].

The ground truth labelling method of the affective expressions could be extended to

incorporate preference learning techniques [Yan09] as discussed in Chapter 2. When the

observers have a choice between more than two labels, the observers’ preference for all of

the labels could be ranked or weighted according to the frequency of use of each affective

label. In the case of the affective posture recognition system presented in Chapter 6, the
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weighted information could be applied at the decision rule level in order to bias the result.

Information about the observer could be used for building a more objective ground truth

as a method for increasing its reliability. For instance, a person’s ability to empathise

with others is considered important for the recognition of another person’s emotional state

[ME72]. Furthermore, as stated in Chapter 1, other factors, such as the observer’s age,

gender or culture are also considered to affect the way a person perceives emotion [Pic98].

This information could be used to bias the computation of the most frequent labels by using

the information as way to weight the evaluation of each observer.

Extend the understanding of affect communicated through posture

Observers from three different cultures were investigated in Chapter 4. As discussed in

Section 7.1, some differences between the cultures were found about which posture features

are indicative of different emotions. The results could lend evidence to support the idea

of emotional ‘dialects’ as described by Elfenbein and Ambady [EA02]. They consider the

idea that emotional expression is a universal language, and that different ‘dialects’ of that

universal language exist across cultures. This is an important concept for affective computing

in order to build effective affect recognition systems. As discussed in Chapter 2, the addition

of information about how different cultures express and perceive affect has become more and

more important in a number of real-life affective computing situations, such as embodied

museum agents [KGKW05][LAJ05] and eLearning systems [DM06]. As systems replace

humans, it is important that how they express and perceive non-verbal behaviours in a multi-

cultural community is as natural as possible so that the user is not made uncomfortable.

Extend the real time affective posture recognition system

The affective posture recognition system presented in Chapter 6 was implemented to recog-

nise affect from sequences of postures as they would arrive in a real time situation. The

results were promising on a testing set of sequences with the system achieving a recognition

rate of only 10% less than the target rate set according to the level of agreement achieved
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by the human observers. Reasons for the difference in recognition rates were postulated

which highlighted ways in which the system could be refined and extended. For instance,

the training set may not have been comprehensive enough. Indeed, several postures included

in the training set achieved low observer agreement, signifying that these postures may be

too ambiguous. Creating a better defined training set consisting of only postures for which

observer agreement was high may help increase the system’s performance.

Another extension of the affective posture recognition system could be the addition of

context information. Context could include such things as the type of application into which

the recognition system is integrated, since the system developed in this thesis is not intended

to be specific only to a video game situation. Information about the user, such as the history

of her interaction with the system [eK05] may also be included as a type of context.

7.3 Thesis Summary

The research presented in this thesis is centred in the rapidly growing field of affective

computing and focused on the automatic recognition of affect. In order to create systems

aimed at the recognition of affect, this thesis tested the power of body posture as a modality

upon which affect recognition systems can be based. The main hypothesis was that affect,

both discrete categories and affective dimensions, could be recognised from whole body

postures using a low-level description of the body in both acted and non-acted situations by

both human observers and automatic recognition models. A labelling and benchmark setting

approach was devised around human observers, and the results showed that a recognition

system could be built that is capable of performing to a level similar to a human interaction

partner. The results also highlighted four exciting directions for future work which aim

to extend the robustness and recognition reliability of the system: i) refining the low-level

posture description; ii) devising a more comprehensive ground truth; iii) extending the

understanding of how affect can be communicated through posture; and iv) extending the

real time affective posture recognition system.
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Appendix D

Motion Capture with the

Nintendo Wii

D.1 Information Sheet for Participants

Thank you for participating in our study. This is one of a series of studies aimed at under-

standing people’s experiences with video games. This study has been approved by Univer-

sity College London’s Committee on the Ethics of Non-NHS Human Research. Please read

through this information sheet and feel free to ask any questions. The experimenters will

answer any general questions; however the specific aspects regarding this study cannot be

discussed with you until the end of the session. The whole study will take approximately

two hours.

You will be asked to play 2-4 sports video games using the Nintendo WiiTM.

Information that we collect will never be reported in a way that specific individuals can

be identified. Information will be reported in a statistical and aggregated manner, and any

verbal comments that you make, if written about in subsequent papers, will be presented

anonymously.
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IMPORTANT

However, if you are pregnant, suffer from heart, respiratory, back, joint or orthopedic prob-

lems, have high blood pressure, or if your doctor has instructed you to restrict your physical

activity or if you have any other medical condition that may be aggravated by physical ac-

tivity, or you are receiving treatment for any injury or disorder involving the fingers, hands

or arms, I kindly suggest you not to participate.

For further information, please read WiiTM(Nintendo c©2007) Health and Safety precau-

tions attached to these sheets.

PROCEDURES

• You will be asked to read, understand and sign a Consent Form. If you sign it the

study will continue with your participation. Note that you can withdraw at any time

without giving any reasons.

• Two photos will be taken for system calibration purposes only.

• You will then be fitted with a motion capture suit to track your body movement during

game play.

• After the tasks you will be asked to complete a questionnaire about your experience.

• Thank you for your participation. Please do not discuss this study with others for

about three months, as the study is ongoing.

• Any other questions? Please ask any questions that come to mind at this point. After

this read and sign the Consent Form.

In case you have any enquiries regarding this study in the future, please contact:

Andrea Kleinsmith, UCL Interaction Centre, University College London, Remax

House, 31-32 Alfred Place, London WC1E 7DP, Tel: +44 (0)20 7679 5242, Fax:

+44 (0)20 7679 5295, A.Kleinsmith@cs.ucl.ac.uk, http://www.uclic.ucl.ac.uk/people/
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D.2 Consent Form A

INVESTIGATORS: ANDREA KLEINSMITH AND NADIA BIANCHI-BERTHOUZE

To be completed by volunteers:

We would like you to read and answer the following questions carefully.

Age
Nationality
Gender F M
Have you read the information sheet about this study? YES NO
Have you had an opportunity to ask questions and discuss this study? YES NO
Have you received satisfactory answers to all your questions? YES NO
Have you received enough information about this study? YES NO
Which investigator have you spoken to about this study? YES NO
Do you understand that you are free to withdraw from this study?
At any time YES NO
Without giving a reason for withdrawing YES NO
Do you understand and accept the risks associated with the health and safety precautions? YES NO
YES / NO Do you agree to take part in this study? YES NO
Do you agree to be video taped? YES NO
Do you agree to be audio taped? YES NO
Do you agree to have your body motions recorded with a motion system? YES NO

I certify that I do not have epilepsy.

Signed: Date:

Name in block letters:

Investigator:

In case you have any enquiries regarding this study in the future, please contact:

Andrea Kleinsmith UCL Interaction Centre Remax House, 31-32 Alfred Pl. Lon-

don WC1E 7DP Tel +44 (0)20 7679 5242 Fax +44 (0)20 7679 5295 A.Kleinsmith@cs.ucl.ac.uk

http://www.uclic.ucl.ac.uk/people/

I, Andrea Kleinsmith, confirm that I have carefully explained the purpose of the study to

the participant and outlined any reasonably foreseeable risks or benefits (where applicable).

Signed: Date:
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D.3 Consent Form B

Name of the researcher: Andrea Kleinsmith

Please read and tick the following boxes:

• I agree for the researcher to use pictures and video of me during the experiment to be

included in the thesis.

YES

NO

• I agree for the researcher to use pictures and video of me during the experiment to be

included in articles to be published in academic journals, conference proceeding and

other equivalent articles.

YES

NO

• I agree for the researcher to use pictures and video of me during the experiment to be

presented in conferences and other equivalent academic presentations.

YES

NO

Would you like to receive through email a brief report on the findings of the study? If yes,

please write your e-mail address.

E-mail

Participant’s name Signature Date

Andrea Kleinsmith

Researcher’s name Signature Date
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Affective Dimensions Overview

of the Non-Acted Postures

Survey
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Appendix G

Glossary of Terms

Actors: The motion capture participants recruited for the acted study. They are not

professional actors. The term is used to refer to the fact that the participants were explicitly

asked to act out specific emotions through whole body postures.

Affect: “Behavior that expresses a subjectively experienced feeling state (emotion); affect is

responsive to changing emotional states, whereas mood refers to a pervasive and sustained

emotion. A subjective feeling or emotional tone often accompanied by bodily expressions

noticeable to others” [psy08]. Cognitive states are considered under the umbrella of affect

and are deemed possible for the automatic recognition of affect.

Affective computing: A multidisciplinary field of research concerned with “computing

that relates to, arises from, or deliberately influences emotions” [Pic97].

Affective posture: A bodily configuration through which an affective state is displayed.

Agreement: Pertains to the human recognition of affect. The level to which the judgments

made by one subset of observers matches the judgments made by a second subset of observers

for the set of postures.

Apex: The most expressive, static instant of the postures.

Benchmark: Defined in this research, it is the average agreement across a number of trials
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between any two sets of observers that can be created using the entire pool of observers.

Configuration model: Used in the motion capture process, the actor and player configu-

ration models define the arrangement and size of the individual’s body. Its purpose is to fit

each of the motion captures to the size and form of the actor’s body.

Emotion: “A conscious mental reaction (as anger or fear) subjectively experienced as strong

feeling usually directed toward a specific object and typically accompanied by physiological and

behavioral changes in the body” [Mer07].

Ground truth label: An affective label assigned to a posture by a single observer or a

group of observers. For a group of observers, the ground truth label is taken as the most

frequent label in the discrete affective categories cases, and the median rating in the affective

dimensions cases.

Observers: The participants of the posture judgment surveys for the acted, basic emotions

study and the non-acted, non-basic affective states study.

Players: The motion capture participants recruited for the non-acted studies involving

video game play.

Posture: “The relative disposition of the various parts of something; esp. the position and

carriage of the limbs or the body as a whole, often as indicating a particular quality, feeling,

etc.; an attitude, a pose” [oed08].

Recognition: Pertains to the automatic recognition of affect. The level at which an auto-

matic model classifies the set of postures.

Replay window: The period of time of motion captured video game play in which the

player views a replay of the point just played. It is during these sections that postural

displays of affect are thought to most likely to occur.

Static posture: A single frame of motion capture data.
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